Competence Framework
for Quantum Technologies

compiled by Franziska Greinert and Rainer Müller
Version 1.0 (May 2021)
Overview and General Structure

Theoretical Background

1. CONCEPTS OF QUANTUM PHYSICS
 1.1 Basic concepts
 1.2 Mathematical formalism
 1.3 Qubit dynamics

2. PHYSICAL FOUNDATIONS OF QUANTUM TECHNOLOGIES
 2.1 Atomic physics as a basis for quantum technologies
 2.2 Quantum optics as a basis for quantum technologies
 2.3 Solid-state physics as a basis for quantum technologies

3. ENABLING TECHNOLOGIES
 3.1 Optical technologies
 3.2 Solid state technologies
 3.3 Laboratory technologies
 3.4 Experimental control

4. HARDWARE FOR QUANTUM COMPUTERS AND SENSORS
 4.1 Superconducting devices
 4.2 Spin-based devices
 4.3 Neutral atoms and ions
 4.4 Emerging qubit concepts
 4.5 Photonic systems
 4.6 Hardware for initialization, manipulation and readout of qubits
 4.7 Utilizing hardware platforms for quantum computing

5. QUANTUM COMPUTING AND SIMULATION
 5.1 Quantum gates
 5.2 Quantum programming languages and tools
 5.3 Quantum algorithms and computing techniques
 5.4 Quantum error correction
 5.5 Quantum simulation

6. QUANTUM SENSORS AND METROLOGY
 6.1 Electromagnetic field sensors
 6.2 Temperature, particle and pressure sensors
 6.3 Inertial and gravity sensing
 6.4 Quantum imaging
 6.5 Atomic clocks
 6.6 Application fields for quantum sensors
 6.7 Sensor integration and hybrid sensing

7. QUANTUM COMMUNICATION
 7.1 Quantum cryptography
 7.2 Quantum networks
 7.3 Infrastructure for quantum communication
 7.4 Hardware for quantum communication

8. PRACTICAL AND SOFT SKILLS
 8.1 Practical/experimental skills
 8.2 Classical programming
 8.3 Management and leadership skills
 8.4 Knowledge of industrial processes
 8.5 Connecting QT with applications and use cases
 8.6 Teaching and outreach skills
 8.7 Networking and communication skills
 8.8 Research ethics, responsible research and innovation
 8.9 Intellectual property knowledge, standardization, certification

Version 1.0 (May 2021) compiled by Franziska Greinert and Rainer Müller
QTEdu: Coordination and support action for Quantum Technology Education of the European Quantum Technology Flagship
Cover photo: ©Siarhei – stock.adobe.com
How to use the competence framework

The European Competence Framework for Quantum Technologies aims to map the landscape of possible competences and skills in Quantum Technologies. It has been compiled by the QTEdu CSA in order to facilitate the planning and design of education and training projects in Quantum Technologies.

The Competence Framework consists of seven main fields. They outline the broad structure of Quantum Technologies:

1. CONCEPTS OF QUANTUM PHYSICS

Each of these main fields has several subfields, e.g.

1.1 BASIC CONCEPTS
1.2 MATHEMATICAL FORMALISM
1.3 QUBIT DYNAMICS

On the first page of this document, the main fields and subfields are shown in a graphical scheme. For each subfield there is an extra page with more details:

1.1 BASIC CONCEPTS

Superposition, interference
Unitary time evolution
Schrödinger equation
Energy quantization, bound states
Tunneling

Depending on the target audience, each educational offer will address different level of depth and difficulty. To reflect this, there is an additional dimension to the Competence Framework that is not shown in the graphics. For each entry, a proficiency level can be specified: from A1 (Awareness) to C2 (Innovation). This scheme was developed for the European Language Reference Framework; it is also used, for example, in the European DigCompEdu framework for digital skills. The use of proficiency levels makes it easier to tailor education and training offers to the needs of the target groups.

The Competence Framework has been compiled by the QTEdu team in a bottom-up approach. Between summer 2020 and spring 2021 we conducted a three-round Delphi study with many participants from the QT community. The results were refined by conducting expert interviews for each subfield.

Quantum Technologies are rapidly evolving. New technologies will be developed, others will become less important. The Competence Framework will have to be adapted accordingly. Thus, the Competence Framework is a living document which will be updated in regular intervals. Suggestions for additions and corrections are welcome at any time.

Please contact:
Rainer Müller and Franziska Greinert
f.greinert@tu-braunschweig.de
QTEdu – Coordination and Support Action for Quantum Technology Education

This framework is part of a project that has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 951787.

© European Union, 2021

Unless otherwise noted, the reuse of this document is authorised under the Creative Commons Attribution 4.0 International (CC-BY 4.0) licence (https://creativecommons.org/licenses/by/4.0/). This means that reuse is allowed, provided appropriate credit is given and any changes are indicated.
1.1 BASIC CONCEPTS

- Superposition, interference
- Unitary time evolution
- Quantum measurement
- Statistical nature of quantum physics
- Heisenberg principle, complementarity
- Decoherence
- Entanglement/non-locality
- Energy quantization, bound states
- Tunneling
- Measurement dynamics (state reduction)
- No-cloning theorem, incomplete state information from measurement
- Simple examples for decoherence (relaxation, dephasing, photon loss)
- Decoherence and coupling to the environment
- Bell inequalities
- Bell states
- Quantum teleportation, superdense coding
- Statistical nature of quantum physics
- Heisenberg principle, complementarity
- Decoherence
- Entanglement/non-locality

1.2 MATHEMATICAL FORMALISM

- Mathematical foundations
- Linear algebra
- (Linear) differential equations
- Statistics
- Topology
- Combinatorics
- State space, bra-ket notation
- Operators, eigenvectors, eigenvalues
- Pure and mixed quantum states
- Commutation, anticommutation
- Wave function
- Density operator
- Pertubation theory
- Photon states/QED
- Coherent states
- Single photon states
- Quantum many-body systems
- Pauli principle, fermions, bosons
- Field quantization
- Composite systems
- Open quantum systems
- Lindblad master equation

1.3 QUBIT DYNAMICS

- Dynamics of two-level systems
- Bloch equation
- Larmor precession
- Rabi oscillations
- Dephasing, relaxation
- Higher-level systems (qudits)
- Bell states
- Quantum teleportation, superdense coding
- Open quantum systems
- Lindblad master equation
- Qubit manipulation
- Bloch sphere
- Manipulating qubits with pulses
- Mathematical description of qubit rotations
2. PHYSICAL FOUNDATIONS OF QUANTUM TECHNOLOGIES

2.1. ATOMIC PHYSICS AS A BASIS FOR QUANTUM TECHNOLOGIES
- Hyperfine and other transitions
- Electronic levels and forbidden transitions
- Zeeman, Stark effect
- Rydberg states
- Vibrational or rotational levels in molecules
- Quantum degenerate gases and quantum statistics

2.2. QUANTUM OPTICS AS A BASIS FOR QUANTUM TECHNOLOGIES
- Photon interactions with atoms and matter
- Polarization degrees of freedom
- Bunching, antibunching, squeezed states
- Quantum machine learning

2.3. SOLID-STATE PHYSICS AS A BASIS FOR QUANTUM TECHNOLOGIES
- Solid state properties
 - Band structure
 - Electrical transport
 - Optical properties
 - Semiconductors
- Superconductivity
 - Josephson effect
 - SQUID devices
- Nanostructures
 - 2D electron gas
 - Quantum dots
 - Nanowires
- Materials science
 - Surfaces science
- Mesoscopic phenomena
- Topological effects
3 ENABLING TECHNOLOGIES

3.1 OPTICAL TECHNOLOGIES
- Classical optics
- Lasers
- Single photon sources
- Entangled photon sources
- Opto-electronical and opto-mechanical systems
- Single photon detectors
- Photonics, fibres

3.2 SOLID STATE TECHNOLOGIES
- Micro- and nanoelectronics
- SQUIDs

3.3 LABORATORY TECHNOLOGIES
- Vacuum technology
- Cryogenics
- Electronics
- Microwave, RF technology
- Laser cooling
- Laser stabilization
- Noise analysis
- Shielding techniques
- Cleanroom technology
- Micro- and nanostructuring

3.4 OPTICAL TECHNOLOGIES
- Software
- Hardware
- Quantum control algorithms
HARDWARE FOR QUANTUM COMPUTERS AND SENSORS

4.1 SUPERCONDUCTING DEVICES
- Superconducting qubit types: charge, flux, transmon, fluxonium
- Josephson junctions for metrology

4.2 SPIN-BASED DEVICES
- NV centers
- Semiconductor quantum dots

4.3 NEUTRAL ATOMS AND IONS
- Ion traps
- Rydberg atoms
- Cold quantum gases
- Optical lattices

4.4 EMERGING QUBIT CONCEPTS
- Topological qubits
- Molecular-spin qubits

4.5 PHOTONIC SYSTEMS
- Linear optical networks
- Photonic integrated circuits
- Boson sampling techniques

4.6 HARDWARE FOR INITIALIZATION, MANIPULATION AND READOUT OF QUBITS
- Microwaves
- Lasers
- Resonators (e.g. readout and gates of superconducting qubits)
- Switches, phase shifters, delays

4.7 UTILIZING HARDWARE PLATFORMS FOR QUANTUM COMPUTING
- DiVincenzo criteria
- NISQ limitations
- Platform-specific limitations
- Integration, packaging, scaling
- Benchmarking
- Middleware
- Integration with classical hardware
5 QUANTUM COMPUTING AND SIMULATION

5.1 QUANTUM GATES
- Single qubit gates
- Two and more qubit gates

5.2 QUANTUM PROGRAMMING LANGUAGES, TOOLS AND PLATFORMS
- Graphical platforms
- Software development kits
- Programming languages

5.3 QUANTUM ALGORITHMS AND COMPUTING TECHNIQUES
- Shor algorithm, hidden subgroup finding
- Grover algorithm, amplitude amplification
- Quantum optimization algorithms
- Quantum machine learning
- Tools
 - Quantum Fourier Transform
 - Quantum phase estimation
 - Quantum linear algebra algorithms
 - Quantum walks
 - E-commerce
- Other algorithms: Overview of the Quantum Algorithm Zoo

5.4 QUANTUM ERROR CORRECTION
- Physical decoherence mechanisms (dynamical decoupling)
- Error mitigation
- Quantum error correction code

5.5 QUANTUM SIMULATION
- Digital quantum simulators
- Analog quantum simulators and quantum annealers
Quantum Sensors and Metrology

6.1 Electromagnetic Field Sensors
- NV center sensors
- Rydberg atom sensors
- Atomic magnetometers, OPMs
- Superconducting sensors (nanowires, superconducting tunneling junctions, kinetic inductance detectors)

6.2 Temperature, Particle and Pressure Sensors
- Spin-qubit based sensors
- Precision spectroscopy gas sensors
- Optomechanical sensors

6.3 Inertial and Gravity Sensing
- Micro-electromechanical sensors (MEMS)
- Atom interferometers
- Rotating nanoparticle sensors

6.4 Quantum Imaging
- Ghost imaging, tomography
- Single photon cameras, sub-shot-noise cameras
- Quantum radar, quantum lidar

6.5 Atomic Clocks
- Microwave clocks
- Optical clocks
- Nuclear clocks
- Transportable atomic clocks
- Atomic fountain clocks
- CPT clocks
- Trapped ion clocks
- Neutral atoms in optical lattices
- Quantum logic clocks

6.6 Application Fields for Quantum Sensors
- Metrology on single quantum level
- Medicine and molecular biology
- Natural resources, civil engineering and earth monitoring
- Civil engineering
- Underground surveys
- Infrastructure monitoring
- Natural resource exploration
- Natural hazard prevention
- Earth monitoring
- Transport and navigation
- Precise timing and position detection
- Inspection in microelectronics
- Ultraprecise timing and synchronization

6.7 Sensor Integration and Hybrid Sensing
7 QUANTUM COMMUNICATION

7.1 QUANTUM CRYPTOGRAPHY

- Quantum key distribution
- Secure authentication, digital signatures, secure storage
- Application to use cases
 - Financial transactions
 - Health records
 - Protection of critical infrastructure
 - E-government
 - E-commerce

7.2 QUANTUM NETWORKS

- Quantum internet
- Sensor and clock networks

7.3 INFRASTRUCTURE FOR QUANTUM COMMUNICATION

- Fibre-based systems
- Free space communication
- Satellite-based systems

7.4 HARDWARE FOR QUANTUM COMMUNICATION

- Quantum random number generators
- Quantum memory, interfaces, switches
- Repeaters
- End-nodes
8.1 PRACTICAL/EXPERIMENTAL SKILLS

8.2 CLASSICAL PROGRAMMING
- Programming languages
- Classical algorithms
- Complexity classes
- Classical cryptography
- Post-quantum cryptography

8.3 MANAGEMENT AND LEADERSHIP SKILLS
- Overview, potential and limitations
- Economic impact of QT
- Entrepreneurship
- Project design and implementation

8.4 KNOWLEDGE OF INDUSTRIAL PROCESSES

8.5 CONNECTING QT WITH APPLICATIONS AND USE CASES
- Knowledge within the fields of use cases
- Mapping use cases to quantum algorithms
- Recognizing quantum advantage
- Applying complexity theory

8.6 TEACHING AND OUTREACH SKILLS

8.7 NETWORKING AND COMMUNICATION SKILLS
- Communication with experts in the application fields
- Communication with customers

8.8 RESEARCH ETHICS, RESPONSIBLE RESEARCH AND INNOVATION

8.9 INTELLECTUAL PROPERTY KNOWLEDGE, STANDARDIZATION, CERTIFICATION