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1 - Executive summary 
Two computing revolutions are currently in the making with artificial intelligence (AI) and quantum 
computing, with different levels of maturity and market footprints. While the European Union’s scientific 
position in both domains is significant, it is still squeezed between the USA dominance and China’s 
increasing role, particularly with artificial intelligence. Just in the large language models, the emergence of 
DeepSeek has shown that innovation, scientific astuteness and open source models can significantly alter 
the market balance. 

Leadership in these domains comes from scientific excellence and the capability to create strong 
integrated software platforms, build significant, scalable and efficient computing infrastructure and spur 
the creation of as generic as possible use cases for end users from the enterprize and public services to 
the consumer markets. A tight integration between academic research and industry R&D is a fundamental 
enabler of market success. 

Quantum computing is still a promise in the making but its synergies with AI are already there and growing. 
Many AI-driven techniques are already enabling significant progress in quantum computing research and 
industry developments, from optimizing qubit control and quantum error mitigation (QEM) strategies in the 
early stage noisy intermediate-scale quantum (NISQ) regime to designing novel quantum algorithms, 
highlighting the importance of mastering this dual discipline as an enabling technology. 

Likewise and on the other way around, early evidence of quantum advantage in faster computing times, 
better results or the need for less training data for solving specific machine learning problems illustrates 
how uniting AI and quantum resources could bring value, even though the required large-scale, fault-
tolerant quantum computers (FTQC) needed to obtain such advantage remain a longer-term objective. 

Public investment in the convergence of AI and quantum computing could strengthen the EU 
competitiveness by building on the existing research excellence in both fields and accelerate the transition 
from laboratories to market applications. One strategic goal of employing quantum computing is to 
advance AI-based solutions for healthcare, finance, materials discovery, and security. It is a mid to long-
term target, but one that will determine industrial and scientific leadership in both domains. Likewise, the 
EU AI and quantum research landscape should encourage the development of both open source and 
commercial integrated software engineering platforms. 

As international competition escalates, ensuring support for academic research and private-sector 
innovation at this intersection will not only secure the economic benefits associated with disruptive 
breakthroughs but also reinforce the EU’s position as a prominent global player in emerging deep-tech 
ecosystems. A carefully orchestrated funding strategy that spans fundamental research, talent cultivation, 
and technology transfer incentives will ensure a robust pathway from visionary lab-scale projects to 
tangible, high-impact industry platforms and applications. Accordingly, this white paper lays out the 
scientific and applications landscape for consolidating artificial intelligence and quantum computing 
disciplines with providing a research and use case agenda. 

It starts with describing how quantum computing could help develop innovative artificial intelligence 
solutions, particularly in the machine learning spaces. This is a mid to long term ploy. It is aligned with 
quantum computer hardware roadmaps. 

It then covers the use cases of classical AI to empower research and developments of quantum 
technologies, focused on quantum computing and quantum sensing. This application domain of AI will 
mature. One important aspect is to ensure classical artificial intelligence scales well as the requirements 
of quantum computing platforms will grow, as the domain progressively shifts from NISQ to FTQC quantum 
computers. One example lies with the critical role of machine learning empower quantum error correction 
(QEC) techniques. At last, it provides a longer term research agenda to drive work in foundational questions 
related to how AI and quantum computing interact and benefit each other. 

The white paper ends with a set of recommendations and challenges on the way to orchestrate the 
proposed theoretical work, align quantum artificial intelligence developments with quantum hardware 
roadmaps, work on both classical and quantum resource estimates, particularly with the goal to mitigate 
and optimize energy consumption, orchestrate this upcoming hybrid software engineering discipline and 
develop the European industry competitiveness while considering societal aspects. 
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2 - Introduction 
The convergence of artificial intelligence (AI) and quantum computing is a rapidly evolving field with the 
potential to impact numerous aspects of technology and science. This white paper explores the synergistic 
relationship between these two disciplines, outlining how quantum computing can enhance classical AI 
capabilities and how AI can be used to advance quantum computing. It details different methods, 
applications, and objectives, with a focus on both immediate and long-term goals. At this stage, it can be 
viewed as an early proposal for a strategic and industry research roadmap. 

This document has been written by AI and quantum technologies (QT) experts in the spirit of the European 
Strategic Research and Innovation Agenda (SRIA), that is trying to avoid overselling. Nevertheless, some 
parts of the text are speculative, due to the great novelty of the subject.  

One of the key areas of focus is quantum-assisted machine learning, where quantum processors pre-
process classical data that then feed classical AI. This approach may lead to improvements in total 
processing speed, accuracy, and reduce the amount of training data required. Quantum data pre-
processing, where, for example, quantum simulators feed data into classical AI algorithms, is such a 
technique. Quantum computing is also explored to accelerate the training phase of classical machine 
learning models, using both near-term noisy intermediate-scale quantum (NISQ) devices with variational 
algorithms, and future fault-tolerant quantum computers (FTQC). Another approach is learning with 
quantum models, where quantum computing takes the helm for both the training and inference phases, 
potentially uncovering data patterns that are intractable for classical systems.  

Quantum computing could significantly improve reinforcement learning (RL), addressing computational 
bottlenecks and lengthy training times. Quantum reinforcement learning (QRL) methods can use 
parameterized quantum circuits to optimize decision-making in complex environments, particularly in 
industrial applications. In unsupervised learning, quantum algorithms are developed to handle tasks like 
automatic clustering and dimensionality reduction, with the potential to provide exponential or polynomial 
speedups compared to the best classical methods available. This can for example be useful to develop 
innovative cyberthreat detection solutions. 

These combined technologies have broad potential applications. In healthcare and life sciences, quantum 
simulations may be used to generate training data for AI models, which could accelerate drug discovery by 
exploring new chemical spaces. Medical image analysis used with X-rays, MRI scans and biological sample 
imaging could be enhanced, reducing reliance on large and labeled datasets. In time series analysis, 
quantum methods may provide more efficient modeling and faster anomaly detection. Quantum 
computing is also being explored for extracting insights from complex quantum systems. 

AI is also being used to advance quantum computing through the design of novel quantum algorithms and 
protocols, the optimization of quantum circuits, with quantum error mitigation, and the implementation of 
quantum error correction, particularly for the costly task of error syndrome detection. AI could help in 
discovering and optimizing quantum experiments, simulating quantum systems, and analyzing quantum 
data. We can even envision to creating fully quantum AI models, where all data, training algorithms, and 
inference systems are quantum in nature. 

The field faces several challenges, including current hardware limitations such as qubit numbers, fidelities, 
and scalability. There are difficulties in loading and processing classical data into quantum states at 
various levels. Training quantum models also presents challenges such as barren plateaus and the lack of 
efficient quantum equivalents to classical back propagation used in the training of neural networks. 
Additionally, ensuring trust, robustness, interpretability, and explainability of AI models as well as avoiding 
various data biases, are critical for the reliable application of these technologies in practical situations. 
Standardized interfaces should be developed to share data and translate quantum problems into a 
common machine learning language. 

This white paper outlines both short-term research goals (3 to 5 years), mid-term research goals (5 to 10 
years) and long-term research goals (beyond 10 years) goals related to these various challenges. For 
example, in the short term, the focus is on demonstrating quantum utility for chemistry and error mitigation, 
identifying features that are easier to extract using quantum machines, and using AI to rediscover known 
quantum algorithms. 
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Medium-term objectives include establishing hybrid frameworks for molecular simulations, new materials 
development, scaling hybrid classical-quantum models and improving quantum error correction 
techniques. Long-term goals involve validating frameworks for drug retargeting tasks, broadening the 
scope of quantum-enhanced machine learning, developing fully quantum AI models, and using AI to co-
design quantum algorithms and quantum hardware. 

Finally, the white paper also emphasizes the importance of foundational questions about learning in a 
quantum world. These include understanding the connections between physics and quantum machine 
learning, defining learning with quantum data, and exploring the limitations of quantum autonomous 
agents. The need for interdisciplinary collaboration, open-source software, and standardized data sets is 
also highlighted, along with the need to train the next generation of experts in both quantum information 
science and machine learning. 

In conclusion, the combination of quantum computing and AI has the potential to drive significant 
advances across many sectors. Strategic research, addressing key challenges, and fostering collaboration 
will be of paramount importance for realizing the full potential of these technologies to the benefit of society 
and European competitiveness in both the AI and quantum computing fields. 
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3 - Quantum for AI 
The rapid advancements in artificial intelligence across scientific and industrial domains have underscored 
the need to overcome the computational limitations of classical methods and explore alternative 
paradigms for scalable and efficient AI solutions. Recent progress in quantum computing suggests the 
potential for quantum-enhanced AI approaches to outperform purely classical techniques, particularly in 
addressing computationally intensive tasks. A key direction in this integration is the development of hybrid 
quantum-classical architectures, where quantum processors serve as pre-processing units for classical 
AI inference tasks. In the near to mid-term, this integration is expected to be feasible with noisy 
intermediate-scale quantum devices comprising 100 to 200 physical qubits, while in the long term, early-
stage fault-tolerant quantum computers with over 50 logical qubits could enable more complex algorithms. 

Quantum-enhanced AI primarily revolves around accelerating specific subroutines, such as optimization, 
sampling, and high-dimensional data processing, which are computationally expensive for classical 
methods. One proposed approach involves combining quantum processors with high-performance 
computing (HPC) resources into hybrid systems that leverage quantum algorithms for specific 
computational bottlenecks while retaining classical AI’s robustness and scalability. Another promising 
avenue is the use of quantum-generated data to enhance AI models, potentially improving processing 
speed, computational complexity, modeling accuracy, and the amount of data required for training. While 
these developments highlight the transformative potential of quantum-assisted AI, realizing practical 
impact requires sustained interdisciplinary efforts from both the classical AI and quantum computing 
communities. This section briefly delineates the current state of quantum computing methods and their 
integration with classical workflows, with an emphasis on machine learning techniques. It further identifies 
key AI subfields—such as optimization, multi-agent systems, and reasoning—that remain underexplored 
despite the significant promise of quantum technologies, thereby underscoring the need for further 
research to facilitate broad and effective adoption. 

The goals are the following: 

• Demonstrate quantum utility from using quantum processors as a pre-processing stage for classical 
AI inference tasks or full end-to-end quantum machine learning solutions. 

• Demonstrate this at scales achievable in the near- to mid-term with 100 to 200 physical qubits using 
quantum error mitigation and variational circuits (NISQ) or in the long-term early stage fault-tolerant 
quantum computers supporting between 50 and 100 logical qubits which require a much larger 
number of physical qubits and allow much deeper quantum circuits. 

The proposed scenarios are: 

• Quantum processors and HPC combined into hybrid systems, including hybrid algorithms.  

• AI using data produced from a quantum processor, achieving overall improvement in 

o processing speed and computational complexity, 
o modeling capability and response accuracy, 
o number of samples needed for training. 

• Classical and quantum resource estimation to identify expected usefulness and timeline. 

3.1 - Quantum-assisted machine learning 

3.1.1 -  Supervised learning 
Quantum supervised learning (QSL) refers to the application of quantum algorithms to solve supervised 
learning tasks. Supervised learning is a fundamental area of machine learning where a model is trained on 
labeled data to learn the relationship between inputs (features) and corresponding outputs (labels). The 
goal is to generalize this learned relationship to predict the outputs for unseen inputs. Common examples 
of supervised learning tasks include classification, where the model assigns an input to a specific category, 
and regression, where the model predicts a continuous quantitative value. 
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State-of-the-art methods, such as neural networks, have demonstrated remarkable performance in many 
tasks, particularly when large datasets and specialized hardware are available. However, these methods 
face several challenges, including the need for extensive sets of labeled data, long training times for 
complex models, limited explainability of predictions, and the high computational cost of modeling high-
dimensional, non-linear relationships. These limitations often hinder the scalability and practicality of 
classical approaches in real-world scenarios. 

Examples include expert annotation costs in fields like medical imaging and legal analysis that limit 
scalability, while noisy labels from crowd-sourcing or subjective tasks, like sentiment analysis, hinder 
performance and generalization. QSL aims to address these challenges, tackling problems that are difficult 
or impossible for classical methods. In general, using quantum algorithms for supervised learning 
problems has different scopes: to simplify the training procedure in terms of training time and the number 
of optimization cycles required; to improve performance in terms of accuracy - how well the models learn 
general patterns from the data; to enhance efficiency by reducing the amount of data needed for training, 
striving to achieve comparable or superior results with less information. This field encompasses a range of 
approaches that consider integrating quantum technologies into machine learning workflows, categorized 
by the extent of quantum involvement and the type of quantum hardware used. The distinction between 
FTQC and NISQ technologies, where fault tolerance is not assumed to be available, shapes the 
methodologies and practical applications of QSL, influencing both their theoretical potential and real-
world feasibility.  

Efficient quantum training of classical models 

One key methodological approach of quantum computing in supervised learning is its use to enhance the 
training phase of classical models. Fault-tolerant quantum machine learning aims to achieve a theoretical 
speedup in optimizing well-defined classical algorithms, such as support vector machines, splines, and 
linear regression by leveraging quantum algorithms to solve the underlying parametric optimization 
problems more efficiently. 

These methods assume a specific functional form for the target function of interest, often expressed as a 
linear relationship with parameters to be estimated, such as in least squares regression, thus enabling the 
use of quantum techniques like variants of the Harrow-Hassidim-Lloyd (HHL) algorithm to accelerate 
computationally expensive linear algebra operations. These methods depend on the availability of error-
corrected qubits and long quantum circuits, which enable efficient solutions to convex optimization 
problems with polynomial complexity. Strong guarantees for the performance of quantum training of 
classical models have in particular been found for models which are both sufficiently dissipative and 
sparse, as they arise in the context of quantum training pruned classical networks. 

In parallel, NISQ-based approaches, such as shadow models, aim to leverage the current generation of 
quantum hardware to train classical surrogates of quantum neural networks that mimic quantum models 
under the assumption that training of these can be performed more efficiently. 

Additionally, in the neural network based deep learning realm, classical-inspired quantum techniques, like 
quantum convolutional neural networks (QCNNs) or quantum perceptrons, adapt established classical 
architectures to leverage computational advantages during training. All these approaches confine the use 
of quantum resources to the training phase, enabling classical inference for scalability and broader end-
user applicability. However, in these cases, ad hoc techniques must be employed to ensure that the 
quantum component is used only during training, while keeping the algorithm entirely classical during 
testing. One such approach is knowledge distillation, where a quantum-trained model guides the training 
of a purely classical model. To transfer knowledge from a quantum neural network (QNN) to a classical 
neural network, first, a variational quantum circuit based QNN is trained on a classification or regression 
task, obtaining softmax-like output probabilities. Next, a classical neural network is trained using the soft 
labels predicted by the QNN instead of the ground truth. The goal is to generate a classical model that 
mimics the QNN’s decision boundary, effectively capturing its learned representations. This approach is 
particularly useful when classical models struggle with optimization, generalization, or data efficiency. 
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For instance, in image classification tasks, deep classical networks often require large labeled datasets 
and extensive hyperparameter tuning to achieve efficient convergence. Similarly, in time series forecasting, 
classical models face challenges with long-range dependencies and high-dimensional correlations, 
necessitating extensive feature engineering and computationally expensive training. In molecular property 
prediction, classical models may struggle to capture quantum mechanical properties using traditional 
feature representations, leading to suboptimal performance. 

Learning with quantum models 

Beyond training enhancements, learning with quantum models incorporates quantum computing into both 
the training and inference phases, aiming to uncover patterns in data that are intractable for classical 
systems. This involves leveraging complex quantum kernels and parameterized quantum circuits to 
represent data in ways classical models cannot. The variational paradigm, which relies on hybrid quantum-
classical techniques in which a smaller variational quantum circuit is controlled by a classical algorithm, 
is particularly prominent in NISQ-based implementations, offering opportunities to explore novel 
hypothesis functions. 

Preliminary results indicate the potential of quantum models to reduce the parameter space, require less 
training data, and enable more efficient training procedures. These results currently hold only for specific 
scenarios involving quantum data. Investigating these advantages in data-intensive domains, such as 
genomics (e.g., DNA sequence analysis), financial modeling (e.g., high-frequency trading risk assessment), 
climate modeling (e.g., large-scale weather prediction), and industrial Internet of Things (e.g., real-time 
sensor network optimization), could open the possibility for quantum models to replace classical ones in 
both training and inference. 

However, significant challenges persist, including barren plateaus in optimization and the lack of efficient 
quantum equivalents to the classical back propagation training technique. In some instances, the quantum 
models can even be fully dequantized, referring to the situation in which an efficient classical algorithm for 
the same task can be found, or classical surrogates formulated. At the same time, one has to ensure that 
the quantum circuit is sufficiently expressive. Despite these obstacles, the integration of quantum 
computing across the supervised learning pipeline holds huge potential by addressing computational 
bottlenecks and revealing new insights into complex data structures. 

Diffusion (probability) models can be seen as a form of supervised learning. These models, specifically 
those used in generative tasks (like image generation), are based on a process where data is gradually 
corrupted with noise in a forward diffusion process, and then the model learns to reverse this noise process 
to recover the original data in the reverse diffusion process. Again, variants of HHL can provide quantum 
algorithms for diffusion models for which there is evidence for a quantum advantage. 

3.1.2 -  Reinforcement learning 
Reinforcement learning (RL) is a branch of machine learning where an agent learns to make decisions by 
interacting with an environment to maximize cumulative rewards, outside the classification of supervised 
and unsupervised learning. It is used in many fields like robotics and large language models. Unlike 
supervised learning, which relies on labeled data, RL focuses on trial-and-error learning, using feedback 
from actions to improve future performance. A key challenge in RL lies in its computational complexity, as 
many RL problems are formulated using partially observable Markov decision processes (POMDPs), which 
are computationally demanding. This complexity makes finding optimal solutions computationally 
intractable for large-scale problems, further highlighting the need for efficient algorithms and 
approximations. Practically, RL relies on extensive datasets and lengthy training times, particularly in state-
of-the-art models RL models which use deep neural networks. These hurdles underscore the potential of 
quantum computing to address the computational bottlenecks inherent in RL. 

Efficient quantum training of classical models 

One promising avenue involves using quantum computing to enhance the training of classical 
reinforcement learning models by employing hybrid quantum-classical architectures. Many RL 
applications, such as robotic manipulation and navigation tasks, rely on Actor-Critic frameworks, where 
the Critic evaluates actions to stabilize policy updates for the Actor. The Critic’s role is vital in these 
systems, as accurate value estimation improves learning stability and convergence rates. 
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However, achieving this in complex environments demands high computational resources and extended 
training times. Hybrid architectures address this by integrating quantum neural networks, which act as the 
Critic, with classical networks for the Actor. Quantum neural networks used as Critic are expected to better 
capture high-dimensional patterns, better trainability and improved stability, as well as better 
generalization during the Critic’s evaluation. Once training is complete, the quantum Critic is removed, 
leaving a fully classical deployment system, without the need of a quantum computer during test. This 
design maximizes the practical utility of RL models while leveraging potential quantum advantages where 
they are most impactful during training. 

In Actor-Critic architectures (classical) the critic is only used at time of training, but the neural network (NN) 
which outputs the action is the actor only. So, in this case there is no “transfer”, because the quantum 
critic plays a role only in the training phase in both cases, classical and quantum.  

Learning with quantum models 

Another significant approach concerns quantum systems that replace the RL agent entirely, requiring 
quantum computation during both training and inferences. In this context, parameterized quantum circuits 
(PQCs) act as quantum agents, processing information and optimizing decisions in environments where 
classical agents struggle. These quantum agents are anticipated to be particularly advantageous in 
scenarios involving optimization in high-dimensional spaces such as those encountered in protein folding 
optimization, where the state space is massive and training a traditional RL agent is extremely challenging. 
They may also address problems with inherent quantum properties, such as quantum synthesis or 
compilation—optimizing the execution of a quantum algorithm on specific quantum hardware. 

While this approach holds transformative potential, it also faces significant challenges. These include the 
current limitations of quantum hardware, issues with scalability, and the practicality of deploying quantum 
computers in contexts where the agent must be dynamic and actively interact with the environment. 
Nonetheless, quantum reinforcement learning agents represent a frontier in combining quantum 
computational power with RL's adaptive frameworks to solve problems beyond the reach of classical 
methods. 

3.1.3 -  Unsupervised learning 
Quantum unsupervised learning seeks to leverage the principles of quantum computing to tackle the 
challenges of unsupervised learning tasks, which encompass clustering, dimensionality reduction, and 
generative modeling. One of the key distinctions within this field lies in the type of algorithms being 
developed: some aim to accelerate existing classical routines, while others introduce entirely new 
quantum-native methods. For instance, the q-means algorithm is a quantum alternative to the widely used 
k-means algorithm that provides a potential exponential speedup in running time while maintaining 
consistency with its classical counterpart. 

Similarly, quantum algorithms for spectral clustering, a powerful technique for uncovering complex cluster 
structures, have been proposed, offering a theoretical polynomial speedup compared to the classical 
runtime. Despite the progress and promises surrounding quantum unsupervised learning, several 
challenges remain. One of the primary limitations is the difficulty of loading and processing high-
dimensional classical data into a quantum state, particularly in the absence of ideal amplitude encoding 
that could be enabled someday by quantum memory models like quantum random access memory 
(qRAM). Additionally, while PQCs show promise, they face training challenges such as barren plateaus, 
where the optimization landscape becomes flat and hinders training. Currently, they remain impractical for 
addressing significant classical tasks.  

Efficient quantum training of classical models 

Quantum unsupervised learning utilizes quantum algorithms to identify patterns, clusters, or structures in 
unlabeled data. Clustering is a key methodology in unsupervised learning that groups data points into 
clusters based on their similarity. The goal is to partition data into groups where points within the same 
cluster are more similar to each other than to those in other clusters. Clustering typically works by 
identifying representative points, called centroids, for each cluster during training. Data points are 
iteratively assigned to the nearest centroid based on a predefined distance metric (e.g., Hamming, 
Euclidean). 
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Centroids are then recalculated to minimize the overall distance between points and their assigned 
centroids, repeating this process until convergence. Convergence occurs when cluster assignments or 
centroids stabilize, or when an objective function, such as the sum of squared distances, stops improving. 
This iterative process ensures that the algorithm identifies a stable grouping of data points that reflects the 
training data's structure. However, calculating these distances can be computationally expensive, 
particularly in large datasets with high number of features, as it may require evaluating all pairwise 
distances between data points. 

Quantum clustering can address these challenges by leveraging the power of quantum algorithms, 
particularly in the computation of distances, which is at the core of clustering. One notable technique is 
the quantum swap test, which enables efficient calculation of the similarity (or distance) between quantum 
states. By employing the swap test, a quantum computer can determine the inner product between two 
data points encoded as quantum states, allowing potentially for significantly faster similarity comparisons 
compared to classical methods.  

A prominent example of this is the acceleration of the k-means algorithm, where quantum methods can 
exponentially reduce the time complexity associated with calculating distances between data points and 
centroids by means of FTQC. Classical k-means involves iterative assignments of data points to clusters 
and recomputation of centroids, with each iteration requiring computationally expensive distance 
evaluations. A quantum variant performs these operations more efficiently. For instance, distance 
computations that scale linearly with the number of points and dimensions in classical approaches can 
scale logarithmically in quantum versions. Furthermore, the algorithm can encode cluster assignments in 
quantum states, enabling sampling and statistical analysis without directly revealing the entire dataset. 
This quantum advantage would make unsupervised learning feasible for high-dimensional, large-scale 
datasets, offering significant speedups and enhanced scalability in real-world clustering applications 
under the assumption that the cost of encoding classical data into quantum states is negligible 

Importantly, while the calculation of the centroids can leverage quantum algorithms, one can also consider 
extracting this information from the quantum system and using a fully classical procedure to assign new 
points that were not originally part of the dataset. This method is effective only if the training set is 
sufficiently representative and the number of new points is limited, ensuring that the computational cost 
of distance calculations remains feasible for classical resources. By integrating quantum techniques into 
the training process, clustering models can benefit from significant speedups in distance computation, 
making quantum clustering a powerful approach for tackling large-scale and high-dimensional data. 

Learning with quantum models 

When adopting a quantum algorithm for both the training and testing phases of clustering, quantum 
methods can be leveraged to evaluate similarities, compute distances, and refine decision boundaries in 
high-dimensional spaces. This approach is particularly beneficial when the training set is limited, and the 
amount of unseen data is significantly larger. However, its feasibility depends on the scalability of quantum 
resources and the cost of quantum-classical transitions. 

A more structured form of unsupervised learning, image segmentation, also encounters major 
computational challenges when relying on classical methods. Supervised segmentation relies on large 
amounts of labeled data, but obtaining high-quality annotations is costly, time-consuming, and often 
inconsistent due to human subjectivity. In many domains, such as medical imaging and remote sensing, 
ground truth labels are sparse, noisy, or unreliable, limiting the effectiveness of deep learning models 
trained on them. Unsupervised methods, including thresholding, clustering, region-growing, and edge 
detection, attempt to bypass the need for labels but come with their own limitations. These approaches 
often struggle with scalability, robustness, and adaptability to complex or high-dimensional data. More 
advanced graph-based methods, which represent images as graphs and segment them through 
optimization techniques like minimum cut or spectral clustering, offer a more structured approach but 
suffer from high computational complexity, particularly when solving large-scale combinatorial partitioning 
tasks. 

Quantum computing presents a compelling alternative by leveraging quantum annealing to efficiently solve 
the combinatorial optimization problem underlying graph partitioning. This approach reformulates 
segmentation as a quadratic unconstrained binary optimization (QUBO) problem, allowing it to be 
executed on quantum annealers. 
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A key advantage is that in many cases, the grid structure of the graph representation of an image aligns well 
with the topology of quantum annealers, such as D-Wave’s Pegasus architecture. This enables efficient 
embedding, allowing the solution of QUBO problems with thousands of variables while maintaining a highly 
favorable ratio between logical binary variables and physical qubits. 

By encoding pixels as nodes and similarities or dissimilarities as edge weights, quantum annealing can 
rapidly find optimal partitions, outperforming, in some circumstances, classical solvers in runtime, 
particularly for large and complex datasets. This capability is especially useful in scenarios with limited or 
noisy labeled data, where traditional supervised learning struggles. Furthermore, while current 
implementations focus on quantum annealing, the same segmentation framework can be extended to 
gate-based quantum computing, leveraging qubit-efficient variational quantum algorithms for further 
advancements in large-scale segmentation tasks. However, while quantum methods show empirical 
advantages on specific scenarios, their extensive practical adoption depends on continued improvements 
in quantum hardware scalability, noise reduction, and efficient quantum-classical hybrid workflows. 

3.2 - Research directions 

3.2.1 -  Learning models 
Focus on quantum-process-based learning models: Most recent research in quantum machine learning 
(QML), particularly for near-term quantum systems, has centered on designing learning models around 
quantum processes. These include models such as quantum Boltzmann machines and parametrized 
quantum circuits used as distribution generators (e.g., quantum circuit Born machines) or as function 
approximators in supervised and reinforcement learning tasks. Considerable progress has been made in 
understanding the mathematical properties of these models, including their expressivity, complexity, and 
trainability bottlenecks.  Recently, efforts have also focused on identifying the boundaries between 
trainable and non-dequantizable models, which contributes to a deeper understanding of when these 
quantum models can provide practical value. However, a critical question remains: why use these 
quantum models? The answer likely lies in future research, particularly with larger quantum systems where 
these models could demonstrate clear advantages. 

Proving learning separations: In parallel, a smaller but impactful line of research has concentrated on 
proving separations between classical and quantum learning, focusing on specific tasks where QML 
provides provable advantages. Initially developed for cryptographic tasks, these separations have been 
generalized to more complex problems in quantum many-body systems, establishing strong connections 
between QML and quantum complexity theory. The concept of "data-hardness” emerges here, referring to 
tasks where the complexity of the underlying correlations makes the problem accessible to quantum 
learning but not classical learning, even with data.  In other words, it can now be proven that are problem 
domains where QML has advantages, even though these cases remain limited and abstract, in that they 
usually apply to highly structured data in order to make cryptographic proof tools available. The broader 
range of machine learning tasks whose efficiency cannot be mathematically characterized - which is the 
case for most of machine learning (ML) in practice - remains an area awaiting larger quantum system, and 
more NISQ-friendly methods. 

Research motivation and objectives: by combining these three key developments in QML, this project 
aims to identify new domains of application where quantum learning can achieve significant breakthroughs 
and in the near-term. Specifically, the project will focus on quantum methods for extracting useful features 
from hard-to-learn datasets, with applications in many-body physics and related computational tasks, in 
the cases they are likely "data-hard." 

The ultimate goal is to develop quantum-assisted ML techniques that can outperform classical methods in 
certain well-defined domains of physics and beyond. 

Short-term goals 

• Identify classes of features extracted in the quantum phase: Develop an understanding of what 
makes certain features easier to extract using quantum machines. 
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• Target domains in many-body physics: Explore areas where quantum feature extraction could 
provide breakthroughs, such as: 

o Condensed-matter systems with highly correlated interactions and critical systems where 
classical ML methods fail. 

o Exotic phases of matter, such as systems with topological order or symmetry-protected 
phases. 

o High-energy physics applications, particularly in tasks related to quantum 
chromodynamics, where classical simulations are inadequate. 

o Quantum control problems, where quantum feedback mechanisms could provide 
superior optimization capabilities. 

Mid-term goals 

• Transition from toy models to real-world applications: Apply these methods to real-world problems 
in material sciences, solid-state physics, quantum chemistry, and high-energy physics (HEP). The aim 
is to move beyond theoretical models and demonstrate the utility of quantum-assisted learning in 
practical domains. 

Long-term goals 

• Optimizing material properties in quantum chemistry or solid-state physics. 

• Anomaly detection: Analyzing HEP experiments data with hybrid quantum-classical models to extract 
novel insights or improve predictive accuracy. 

3.2.2 -  Quantum artificial intelligence for algorithmic discovery 
Quantum information processing bears the promise of solving some hard computational problems or of 
improving their ability to perform distributed tasks. While concrete examples of such algorithms and 
protocols have fostered the development of the field during the past 30 years, designing new ones is both 
a necessity and a challenge. Because there is no a priori criterion that will ensure the existence of an 
efficient quantum solution for a given task, quantum algorithmic development is akin to searching a needle 
in a haystack.  

The goal here is to leverage quantum and classical artificial intelligence to specifically address the issue of 
discovering and designing novel quantum algorithms and protocols. It involves utilizing quantum intelligent 
agents, specifically quantum neural networks, within a supervised and reinforcement learning framework. 
These agents will be trained to optimize quantum circuits that perform specific operations. Initial results 
have demonstrated that this approach produces optimal quantum circuits for tasks where quantum 
computers outperform classical ones such as the quantum Fourier transform (QFT), or nonlocal games 
(e.g. CHSH game). In addition, they took into account hardware constraints which suggest that these 
agents have not only the potential to uncover new, efficient quantum algorithms, a task that has proved to 
be a formidable challenge, but also to truly codesign. 

Short-term goals 

• Use the above quantum intelligence framework to re-discover known quantum algorithms and 
protocols (QFT, Grover’s search algorithm, CHSH game, quantum key distribution, etc.). 

Mid-term goals 

• Discover novel quantum algorithms and protocols, for example, new algebraic transforms, 
cryptographic protocols, error correction codes, etc.  

• Discover circuits that inherently provide noise-robustness via suitable constraints during training, in 
an application-agnostic fashion, in order to use such circuits in the NISQ era. 

Longer-term goals 

• Use AI to co-design quantum algorithms and quantum hardware, optimizing the necessary resources 
and bringing forward the quantum applications era. 
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3.2.3 -  Quantum data pre-processing 
Classical data processing methodologies refer to the traditional approaches used in computing for the 
preparation and analysis of data. These methodologies encompass a variety of tasks, including but not 
limited to, data cleaning, which involves the correction of errors or inaccuracies in the dataset. Another key 
task is feature selection, which aims to determine the most significant variables for the analysis at hand. 

Additionally, normalization processes are applied to adjust the data’s scale, enhancing the performance 
of models used for analysis. Techniques such as dimensionality reduction are also significant; they involve 
simplifying intricate datasets by reducing the total number of features while maintaining the dataset's 
critical information. These methods are instrumental in ensuring that data is both accurate and pertinent, 
rendering it suitable for further analytical processes. This makes them indispensable tools in the realm of 
machine learning and data science. 

Quantum data preprocessing builds upon classical techniques by using quantum computing capabilities. 
This process entails the encoding of classical data into quantum states, with the potential goal of enabling 
more efficient storage and manipulation of information. Furthermore, it involves the development of 
methodologies capable of processing quantum states to extract meaningful information. Quantum 
algorithms could achieve computational advantages in handling large-scale and high-dimensional 
datasets, where classical methods become computationally expensive or infeasible. One fundamental 
aspect of quantum data preprocessing is quantum state preparation, where classical data is mapped onto 
a quantum system using techniques such as amplitude encoding, basis encoding, angle encoding, and so 
on. These representations could enable parallel processing and efficient transformations, reducing the 
computational cost of subsequent analyses. 

Quantum algorithms, such as quantum principal component analysis (PCA), could allow for faster 
dimensionality reduction by using quantum linear algebra techniques. In particular, this approach offers 
an exponential speedup over classical PCA by leveraging quantum density matrix exponentiation. While 
classical PCA scales polynomially with system dimension, making it costly for large datasets, quantum 
PCA extracts principal components efficiently using multiple copies of a quantum system’s density matrix. 
This approach is especially beneficial for low-rank matrices, as it identifies dominant eigenvectors without 
requiring full matrix construction—provided a fault-tolerant quantum computer is available. 

Similarly, quantum feature selection methods, utilizing variational quantum circuits and optimization 
techniques, may allow us to identify relevant variables more efficiently than their classical counterparts. 
Indeed, by encoding data into quantum states and optimizing parameterized quantum gates, these 
methods strive to explore complex feature interactions more efficiently than classical algorithms. 
Quantum parallelism enhances correlation detection and the efficient evaluation of multiple feature 
subsets, potentially leading to faster and more accurate feature selection. 

Quantum distance metrics and kernel methods also play a crucial role in the preprocessing phase of 
quantum machine learning by transforming data into a quantum-friendly format for further analysis. 
Quantum distance metrics, such as the Quantum Hamming Distance or Quantum Euclidean Distance, can 
compute the similarity between data points by exploiting quantum parallelism. This enables the 
identification of subtle correlations in high-dimensional data that might be difficult to detect classically. 
Similarly, quantum kernel methods map data into a higher-dimensional quantum Hilbert space, where 
complex relationships are more easily separated, enhancing the ability to perform clustering and 
classification tasks. 

Finally, quantum generative models, including quantum Boltzmann machines and quantum generative 
adversarial networks, present novel frameworks for data augmentation, consequently positioning them as 
valuable instruments within data preprocessing workflows. The integration of quantum computing into 
data preprocessing pipelines has the potential to unlock new possibilities for the efficient handling of large, 
complex datasets of various application domains. 
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3.2.4 -  Quantum optimization 
Optimization is a fundamental problem in AI and beyond that involves identifying a point in a search space 
that minimizes or maximizes a given cost function. Many AI problems encounter extremely large search 
spaces, often due to combinatorial explosion in discrete domains, where the number of possible solutions 
grows exponentially. Additionally, in continuous search spaces, the lack of convexity in the cost function 
further complicates the process, leading to a potentially infinite number of solutions. This class of 
problems often is NP-hard in worst case complexity. 

Quantum computing offers three promising avenues to address these challenges. First, quantum 
algorithms can encode and explore the search space of classical problems, potentially accelerating the 
discovery of optimal solutions, as envisioned with Grover's unstructured search algorithm in fault-tolerant 
quantum computing. For example, one can accelerate dynamic programming algorithms for the famous 
travelling salesman problem in this way, although actual speedups have to be assessed for practical use 
cases compared to best-in-class classical solutions. This usually leads to polynomial quantum speedups. 
Second, efficient optimization techniques are essential for training quantum circuits in variational 
algorithms, with the promise of enabling more effective solutions to optimization problems. Here, no 
proven separations are known yet.  

Third, there are known problems where quantum algorithms can approximate instances of practically 
relevant problems such as integer linear programming well, while classical computer cannot approximate 
those instances well. In this sense, one can prove exponential separations of quantum over classical 
algorithms for sub-problems of hard optimization problems. Complementing this approach, decoded 
quantum interferometry connects combinatorial optimization problems, like sparse max-XORSAT, to 
decoding local density parity check codes, a task that can be efficiently solved using classical algorithms 
such as belief propagation. This approach leads to a quantum algorithm that surpasses classical 
optimization techniques, including simulated annealing. This section explores the intersection of quantum 
computing and AI in both directions, highlighting their synergies in tackling optimization challenges. 

For natively quantum gradient descent algorithms: It is interesting to explore optimization algorithms 
finding approximate solutions efficiently that are natively suited to analog quantum simulators, as they can 
leverage the unique properties of quantum systems to address complex optimization challenges. For 
instance, quantum Hamiltonian descent (QHD) exemplifies this approach by mimicking gradient-based 
optimization through quantum dynamics. By utilizing quantum tunneling and other quantum mechanical 
effects, QHD enhances the ability to escape local minima and navigate challenging optimization 
landscapes. Such methods highlight the potential of quantum-native algorithms to complement or 
outperform classical techniques in optimization, particularly in scenarios involving highly non-convex or 
high-dimensional problems. 

Evolutionary optimization: Evolutionary algorithms are search and optimization procedures inspired by 
the principles of natural selection and biological evolution. These algorithms emulate biological processes 
such as reproduction, mutation, crossover, and the survival of the fittest, thereby enabling the evolution of 
populations of candidate solutions over successive generations. In contrast to conventional optimization 
techniques, evolutionary algorithms operate on a population of solutions rather than a single point, thereby 
inherently facilitating parallel processing. This parallelism enables them to explore diverse regions of the 
search space concurrently, thereby markedly enhancing their capacity to evade local optima and identify 
global solutions. Therefore, quantum computing is an appropriate means of improving the efficacy of 
evolutionary algorithms by capitalizing on its inherent parallelism and computational capacity. Quantum 
computers can expedite pivotal operations within evolutionary algorithms, including fitness evaluations, 
mutation, and crossover procedures, by processing superpositions of potential solutions in a concurrent 
manner. 

Quantum automated planning and scheduling (QPS) explores the integration of quantum computing into 
AI planning and scheduling tasks, focusing on quantum-supported planning (QP) and scheduling (QS). QP 
addresses tasks such as online planning, which involves real-time feedback, and offline planning, which is 
detached from execution. Under uncertainty, challenges such as partially observable Markov decision 
processes (POMDPs) arise, requiring complex strategies like conditional plans or utility-maximizing 
policies. These problems are computationally expensive, with tasks often being PSPACE-complete or 
worse. Initial quantum methods, such as quantum POMDP models and quantum Markov decision 
processes (QMDPs), propose theoretical frameworks but lack concrete experimental validation. 
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Similarly, QS tackles problems like job shop scheduling and its flexible variants (flexible job shop 
scheduling), which aim to optimize job assignments on multi-purpose machines to minimize objectives like 
production makespan. Quantum approaches, including quantum genetic algorithms, quantum particle 
swarm optimization, and hybrid MILP-QUBO (mixed-integer linear programming with quadratic 
unconstrained binary optimization problem formulation) methods, demonstrate potential speedups in 
specific instances, such as solving scheduling tasks for up to few hundred machines and jobs. Additionally, 
problems like bin packing have been addressed using quantum annealing, though current hardware 
limitations constrain their effectiveness. While early results highlight quantum advantages under specific 
conditions, further research is needed to identify scenarios where quantum methods outperform classical 
approaches. 

Short-term goals 

• Design and implement quantum-native optimization techniques and benchmark their performance 
against classical methods in AI applications such as combinatorial optimization and machine learning. 

• Conduct medium-scale experiments to validate quantum-assisted scheduling and planning methods, 
identifying practical cases where quantum approaches offer computational advantages over classical 
techniques. 

Medium-term goals 

• Develop hybrid quantum-classical optimization frameworks and integrate them into industrial AI 
applications, such as logistics, supply chain management, and financial modeling, leveraging near-
term quantum devices. 

• Design tailored quantum evolutionary algorithms optimized for specific quantum hardware and 
benchmark their performance on real-world optimization tasks, such as scheduling, bin packing, or 
combinatorial design, demonstrating practical advantages over classical approaches. 

Long-term goals 

• Demonstrate a provable quantum advantage in practically relevant optimization tasks related to AI, 
such as large-scale automated planning, complex scheduling utilizing fault-tolerant quantum 
computers. 

• Implement and validate quantum optimization techniques on large-scale industrial problems, using 
fault-tolerant quantum computers or specialized quantum hardware. 

3.2.5 -  Quantum reasoning 
Reasoning is the process by which intelligent agents draw conclusions, make decisions, and solve 
problems based on available knowledge, rules, and observations. It allows agents to infer new information 
from existing facts, resolve uncertainties, and adapt to changing conditions. Reasoning can be classified 
into several types, including deductive reasoning (deriving logically certain conclusions from general rules), 
inductive reasoning (inferring general principles from specific instances), and abductive reasoning (finding 
the most plausible explanation for given observations). Intelligent agents implement reasoning through 
formal logic systems, such as propositional logic, first-order logic, and probabilistic logic, to construct 
structured representations of their surroundings. They encode entities, relationships, and evolving 
conditions using knowledge representation techniques like ontologies, semantic networks, rule-based 
systems, and Bayesian networks. 

These structured models enable agents to process complex information, infer new knowledge, and update 
their beliefs dynamically. Intelligent agents can analyze representations using inference mechanisms, 
which include logical inference engines, probabilistic reasoning models, and machine learning-based 
predictors. These mechanisms allow agents to generate new insights, optimal decisions, and adaptive 
action plans. As their environments evolve, intelligent agents continuously refine their models to maintain 
accuracy, coherence, and responsiveness in real time. 
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Quantum computing could enhance these capabilities by taking advantage of quantum parallelism to 
encode and process knowledge structures more efficiently. It could enable agents to evaluate multiple 
reasoning paths simultaneously, thereby significantly accelerating the processes of inference and 
decision-making.  Entanglement could enhance the representation of complex dependencies, improving 
context-aware reasoning and multi-agent coordination. Quantum interference has been shown to refine 
solutions by amplifying correct inferences and reducing computational errors. 

The aforementioned quantum properties provide a fundamental advantage in fuzzy logic systems, 
probabilistic knowledge bases, and combinatorial optimization, thereby rendering AI agents more efficient 
in handling uncertainty, large-scale reasoning tasks, and highly dynamic environments. For example, in 
rule-based systems quantum computing could provide the ability to evaluate multiple rules and potential 
conclusions simultaneously using quantum superposition. Unlike classical systems, which process rules 
sequentially or in parallel with significant computational overhead, a quantum circuit can encode an entire 
rule set and explore all possible inferences at once. This could drastically improve efficiency in expert 
systems, automated reasoning, and legal decision-making, where complex rule dependencies must be 
evaluated rapidly. 

Additionally, quantum entanglement can enable richer representations of logical relationships, allowing 
for more nuanced and context-aware reasoning. Another goal of quantum computing in reasoning could be 
related to probabilistic inference and Bayesian networks. Indeed, using quantum phase estimation and 
amplitude amplification, quantum algorithms can sample probability distributions potentially in a more 
efficient way than classical Monte Carlo methods. Moreover, other potential applications of quantum 
computing in reasoning are related to quantum-native reasoning architectures, where inference 
mechanisms exploit quantum entanglement and superposition rather than just mimicking classical logic. 
This could enable more advanced AI models capable of reasoning with fewer data and better than classical 
systems. 

Short-term goals 

• Develop quantum-assisted reasoning models to accelerate specific inference tasks (e.g., rule 
evaluation, probabilistic inference). 

• Explore quantum-enhanced probabilistic reasoning techniques, such as quantum-assisted Bayesian 
networks and fuzzy logic systems. 

• Implement proof-of-concept quantum circuits for evaluating multiple logical rules in parallel. 

• Investigate hybrid quantum-classical approaches for automated reasoning and decision-making. 

• Benchmark quantum algorithms against classical methods in expert systems and legal decision-
making. 

Medium-term goals 

• Optimize quantum reasoning architectures for scalability and efficiency in large-scale reasoning tasks. 

• Integrate quantum-enhanced inference mechanisms into AI-driven decision-support systems. 

• Develop quantum-inspired techniques for multi-agent reasoning and context-aware decision-making. 

• Improve quantum algorithms for probabilistic inference, using phase estimation and amplitude 
amplification. 

• Establish practical applications of quantum computing in real-world reasoning tasks, such as legal 
analysis, financial modeling, and medical diagnosis. 

Long-term goals 

• Design fully quantum-native reasoning architectures that exploit entanglement and superposition for 
advanced AI cognition. 

• Achieve quantum advantage in complex reasoning tasks, surpassing classical AI in efficiency and 
accuracy. 

• Develop general-purpose quantum reasoning frameworks applicable across diverse AI domains. 
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• Explore quantum-enhanced learning models capable of reasoning with minimal data and handling 
extreme uncertainty. 

• Integrate quantum reasoning with broader AI ecosystems, enabling next-generation autonomous 
systems with superior adaptability and intelligence. 

3.2.6 -  Quantum algorithms for multi-agent systems 
Quantum multi-agent systems (QMAS) research explores the integration of quantum computing into the 
framework of autonomous agents and multi-agent systems. This integration involves primarily designing 
quantum-enhanced methods for coordination and cooperation among agents in centralized and 
distributed environments. These systems consist of multiple agents, either homogeneous or 
heterogeneous, that collaborate or compete in complex environments to achieve both individual and joint 
goals simultaneously. Despite the maturity of classical multi-agent frameworks, adapting these systems 
to leverage quantum computing is a relatively nascent field.  Quantum-supported coordination methods 
have been proposed to enhance agent collaboration. Notable advances include quantum coalition 
protocols and contract net systems, which are methods used to negotiate and form agent coalitions in 
competitive or cooperative settings. Quantum coalition protocols have demonstrated reduced 
communication overhead and computational benefits over their classical counterparts. For example, 
quantum versions of coalition negotiation and resource allocation methods, such as quantum contract net 
protocols, offer enhanced privacy for agents while maintaining comparable computational efficiency. 
However, these advantages are solely theoretical and require further exploration.  

Beyond theoretical constructs, with the advent of near-term quantum technology, QMAS have begun to 
address real-world problems on existing quantum hardware.  However, many proposed methods have 
been tested only on simplified models, and their scalability and utility for complex, real-world problems 
require further investigation. Nevertheless, the ongoing research highlights the potential of quantum 
computing to address computationally intensive  challenges in multi-agent systems, offering a glimpse into 
the future of AI in quantum-enabled environments.  

One key area where QMAS show promise is in enhancing cooperation and coordination among agents, 
particularly in complex optimization tasks such as resource allocation, network optimization, and social 
network analysis. A fundamental challenge in multi-agent system (MAS) is coalition formation, where 
agents are grouped into teams or coalitions to maximize collective utility. Given the combinatorial nature 
of the coalition structure generation problem, this can be reformulated as QUBO problem, as 
demonstrated by BILP-Q algorithm and allows the use of quantum routines like the quantum approximate 
optimization algorithm (QAOA) and quantum annealing to explore large solution spaces presumably more 
efficiently. However, due to the current limitations of quantum hardware, scaling these approaches to 
larger problems remains an open challenge. 

Hybrid quantum-classical methodologies address these limitations by optimizing the interaction between 
quantum and classical resources. For instance, GCS-Q employs a top-down approach where the grand 
coalition is iteratively split into smaller coalitions using quantum annealing to solve the computationally 
expensive bipartitioning problem. At each step, the algorithm formulates the bipartitioning as a QUBO 
problem and solves it on quantum hardware, while the classical part manages the overall coalition 
structure and ensures efficient recursion. Similarly, QuACS adopts a hybrid approach using QAOA to find 
the optimal bipartitions for induced subgraph games, combining quantum procedures in solving 
subproblems with classical logic to maintain scalability. 

These hybrid methodologies delegate only the most quantum-suited tasks, such as solving graph-cutting 
problems, to quantum hardware, while classical components handle tasks that quantum systems cannot 
yet scale to. This strategic delegation results in a significant reduction in runtime and improved solution 
quality. Moreover, hybrid designs ensure that the advantages of quantum acceleration are leveraged 
without overburdening the limited qubit capacity of current hardware.  

Future research should focus on qubit-efficient variational quantum algorithms, which further optimize 
quantum resource usage. These methods aim to minimize qubit requirements while maintaining quantum 
advantages in solving high-dimensional, combinatorial problems like coalition formation. By carefully 
integrating quantum and classical elements, hybrid quantum-classical approaches present a scalable 
path for addressing the computational challenges of coalition formation in MAS. 
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Short-term goals 

• Develop qubit-efficient variational quantum algorithms to enhance coordination and decision-making 
in multi-agent systems (MAS) while mitigating current hardware constraints. 

• Experimentally validate quantum-enhanced multi-agent strategies, such as coordination and 
negotiation protocols, using near-term quantum devices and hybrid quantum-classical methods. 

Mid-term goals 

• Collaborate with hardware developers to improve quantum architectures tailored for MAS tasks, 
focusing on optimizing quantum circuits for agent interactions. 

• Design more efficient integration strategies that balance quantum and classical computation to 
expand the scalability of QMAS solutions in real-world AI-driven environments. 

Long-term goals 

• Utilize fault-tolerant quantum computing to enable entirely quantum-driven agent interactions, 
decision-making, and optimization, surpassing classical limitations in MAS applications. 

• Deploy QMAS methodologies in high-impact domains such as autonomous systems, distributed AI, 
and dynamic resource management, leveraging advanced quantum hardware with improved stability 
and scalability. 

3.3 - Use cases and applications 

3.3.1 -  Healthcare and life sciences 
As of 2024, the fields of medicine and life sciences face several significant roadblocks that hinder the full 
potential of medical advancements. One of the primary challenges is the high cost and complexity of 
developing new treatments, particularly in areas like gene therapy and personalized medicine. While gene 
therapy offers incredible promise for curing genetic disorders, issues such as targeting the right cells and 
controlling treatment dosage remain significant obstacles that need to be addressed before these 
therapies can become more widespread. 

Another major roadblock is the integration of AI and machine learning into diagnostics and treatment 
planning. While AI has made significant strides in improving diagnostic accuracy, the technology still faces 
limitations in data quality and interpretability. Ensuring that AI systems can provide reliable, unbiased, and 
explainable results is crucial for their broader adoption in clinical settings. 

By using ab-initio simulations generated on quantum computers as training datasets for AI models, we 
could explore vast regions of chemical compound space that go beyond traditional bio-like molecules. This 
synergy between quantum computing and ML could significantly enhance drug discovery by providing a 
more comprehensive exploration of chemical spaces, identifying novel compounds, and accelerating the 
design process. 

Quantum computing for accurate chemical simulations: Quantum computers could accurately 
simulate molecular properties at the quantum level, which is critical in drug design where small changes 
in molecular structure can drastically affect a drug’s efficacy. Classical computers struggle with simulating 
the behavior of large, complex molecules due to the exponential increase in computational demands, but 
quantum computers may handle these tasks efficiently, allowing for precise ab-initio calculations. 

Machine learning for efficient exploration: While quantum computing may generate highly accurate 
datasets, it is currently limited in scalability. Machine learning models, on the other hand, excel in handling 
large datasets and exploring vast solution spaces efficiently. By training ML algorithms on quantum-
generated datasets, we can develop models that generalize well to new, unexplored regions of the 
chemical compound space, predicting the properties of molecules that lie far from the bio-like compounds 
traditionally studied in drug design. 
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Expanding the search space: Traditional drug discovery is often limited to molecules that are structurally 
similar to known bio-like compounds, which limit innovation. By leveraging ML models trained on quantum-
derived data, we could explore chemical spaces that are far removed from this limited set, potentially 
uncovering entirely new classes of molecules with unique biological properties. This could lead to the 
discovery of novel therapeutics with mechanisms of action previously unknown to science. 

Improving drug design: Quantum simulations may provide insights into complex phenomena such as 
protein-ligand interactions, electronic structure, and reaction mechanisms with high precision. When 
these simulations are used as training data for ML algorithms, the resulting models can predict chemical 
properties like binding affinity, solubility, and reactivity more accurately. This reduces the time and 
resources needed for experimental testing and accelerates the identification of promising drug candidates. 

3.3.2 -  Industry 
Image analysis: Current state-of-the-art deep learning models for image analysis heavily rely on the 
availability of large and labeled datasets. However, with the rapid pace of data generation in fields such as 
medical imaging, autonomous driving, and satellite imagery, it is often unfeasible to label all available data 
due to the high costs, time, and expertise required for manual annotation. While unsupervised classical 
approaches, such as graph-based segmentation, provide alternatives for image processing without labeled 
data, they remain limited in practice because of the computational intensity required for handling high-
resolution, real-world images. This challenge is especially evident in image analysis tasks like 
segmentation and motion detection, where processing extensive datasets, complex patterns, and inherent 
noise or inconsistencies further complicates the computational workload. Quantum algorithms present a 
compelling solution, with the potential to reduce computational loads and increase efficiency in tasks like 
graph-cut optimization and classification. Particularly in applications with noisy labels or where rapid 
processing is essential, quantum methods offer promising enhancements, addressing some of the primary 
limitations of traditional approaches in image processing. 

Safe navigation in autonomous driving: The problem of collision-free navigation (CFN) for self-driving cars 
is a complex optimization problem, often modeled as a POMDP. Current state-of-the-art solutions rely on 
deep reinforcement learning, which, while effective, requires substantial computing resources and training 
time. QRL has emerged as a potential solution, showing faster convergence and improved stability in 
simplified environments. QRL methods leverage quantum computation, specifically PQCs, which have 
demonstrated polynomial improvement in parameter space complexity compared to classical deep Q-
networks. However, current QRL methods have not been tested in complex real-world environments like 
CFN. The introduction of quantum components, specifically for the critic in an actor-critic framework, 
offers potential advantages in training complex RL architectures like Nav-Q, aiming to enhance trainability 
and stability without requiring onboard quantum hardware during testing. 

Time series analysis: Time series data, prevalent in domains like finance, healthcare, meteorology, and 
industrial monitoring, presents unique challenges for AI due to its temporal dependencies, high-
dimensionality, and potential for irregular sampling or noise. Classical methods, while powerful, often 
struggle to capture long-term dependencies or efficiently process massive datasets with intricate temporal 
patterns. Quantum methods, with their ability to process complex correlations and dynamics, offer 
promising advancements in time series analysis. Quantum algorithms could enable more efficient 
modeling of temporal patterns, possibly using less memory than their classical counterpart, faster 
anomaly detection, and enhanced forecasting accuracy by leveraging the native ability of quantum 
systems to handle high-dimensional data and optimize over non-linear relationships. Additionally, 
quantum-enhanced versions of classical techniques, such as recurrent neural networks or transformers, 
might provide improvements in processing and predicting time-dependent data across a range of critical 
applications. 

Bin packing: Planning and scheduling problems are central to a wide range of industries, from logistics to 
manufacturing, and their complexity poses significant challenges as problem size grows. In logistics and 
supply chain management, the bin packing problem is a prime example. This task involves efficiently 
packing items into the minimum number of containers without exceeding capacity limits, a critical issue in 
optimizing warehouse storage, transportation, and data center resource allocation. Quantum algorithms, 
particularly QUBO-based techniques, hold promize for solving these problems more effectively than 
classical methods, potentially improving space utilization and operational efficiency. 
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Job shop scheduling: In industrial production, the flexible job shop scheduling problem is another key 
application. This task requires assigning jobs to machines to minimize production time, a complex 
challenge due to the vast number of potential job-machine combinations. Hybrid quantum-classical 
methods offer a practical approach by dividing the scheduling process into smaller, more manageable 
subtasks. These methods can enhance machine allocation, reduce production makespan, and adapt to 
dynamic industrial environments, making them valuable for advanced manufacturing systems in Industry 
4.0. These applications demonstrate the potential of quantum technologies to revolutionize planning and 
scheduling in real-world settings. 

Peer-to-peer energy trading: Peer-to-peer energy trading is a complex problem typically framed using 
multi-agent systems, where the agents are individual energy producers (e.g., households with solar panels) 
and consumers negotiating energy exchanges. Each agent’s goal is to maximize utility, such as minimizing 
energy costs for consumers or maximizing revenue for producers, while ensuring the overall system 
remains balanced. The complexity arises from balancing supply and demand in real-time despite the 
intermittent nature of renewable energy sources, designing fair and efficient pricing mechanisms, and 
optimizing infrastructure use, such as storage and grid connections. Additionally, regulatory and social 
considerations, such as compliance with policies and encouraging participation, add further challenges. 
Tailored quantum algorithms could offer advantages by optimizing dynamic multi-agent interactions, 
managing large-scale data for real-time decisions, and enhancing the efficiency of computationally 
intensive tasks like pricing and grid optimization. 

Electric vehicle charging management: The management of electric vehicle charging systems also relies 
on multi-agent systems, where the agents are vehicles, charging stations, and grid operators interacting to 
optimize energy distribution. Each agent has its own objective: the vehicles aim to minimize charging costs 
and waiting times, charging stations aim to maximize throughput, and grid operators aim to ensure grid 
stability and prevent overloading during peak demand. The primary challenges include scheduling charging 
sessions efficiently to prevent congestion, minimizing overall operational costs, and optimizing the 
geographical distribution of energy supply. The variability in electric vehicles arrival times, charging 
requirements, and station availability adds further complexity. Tailored quantum algorithms could enable 
efficient scheduling and routing optimization, improve real-time energy distribution, and balance the 
competing objectives of all agents while maintaining grid stability. 

Dynamic environments in mobility and robotics: a multi-agent system framework is crucial for 
coordinating interactions between diverse entities such as vehicles, drones, robots, and their 
environments. Each agent, whether an autonomous car or a robot, must optimize its decisions in real time 
to achieve goals like collision avoidance, efficient path planning, or task completion. Challenges arise from 
the dynamic and uncertain nature of environments, requiring agents to adapt to changes in traffic, 
obstacles, or tasks. Quantum algorithms for multi-agent systems could offer significant advantages by 
enabling faster optimization of complex interactions, improving decision-making under uncertainty, and 
scaling efficiently with the number of agents. Applications include optimizing coordinated fleet 
movements, enhancing task allocations in robotic swarms, and accelerating real-time computations for 
dynamic and unpredictable environments, paving the way for more robust and efficient autonomous 
systems. 

3.3.3 -  Quantum physics 
The rapidly evolving field of QML offers opportunities for tackling complex problems in physics, particularly 
in systems where classical ML techniques struggle, but also in other computationally hard tasks. Recent 
advances in QML highlight three key research directions, which collectively point to new ways in which 
quantum computers could outperform classical systems for specific learning tasks, especially in complex 
quantum systems. Here we aim to build on these developments and explore the potential for quantum 
computers to extract valuable insights from challenging datasets in well-defined domains of physics, 
including many-body physics, condensed matter, and high-energy physics. 
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4 - AI for quantum 
Artificial intelligence, machine learning, and computational methods inspired by them are transforming 
mathematical and computational modeling techniques across the board, offering in many cases a novel 
perspective on what it means to create a model. It accelerates work flows and moves the needle on the 
question what intellectual task can be automated. Diligent use of these methods makes human knowledge 
work more meaningful in that it guides and supervises the AI. 

For quantum technologies, AI is a key enabler with a potential that goes far beyond matching two current 
technologies. First, the probabilistic character of quantum physics can be matched to that of AI. Second, 
constructions in quantum technologies often defy intuition yet are based on mathematical equations. 
Third, the strong precision requirement of quantum technology requires testing against complex, multi-
parameter models taking the tiniest disturbances into account. Finally, during its buildup, shortcuts to 
building up a quantum workforce are more than welcome.  

Short-term, mid-term and long-term goals 

• Enhancement of the control software stack with AI keeping quantum technologies at their maximum 
performance most of the time. 

• Automated post-processing of data from quantum experiments to output useful data for humans. 

• Development of automated design tools for quantum experiment realizations with low need for human 
correction. 

• Automated quantum error correction with AI enhancement, improving both threshold and overhead. 

4.1 - Discovery and optimization of quantum experiments 
The routine operation of quantum computers will require new approaches for device design, optimal 
control, readout, efficient compilation, detection of noise mechanisms, and error correction. One example 
of enhanced compilation is ML models that can autonomously learn generic strategies to compress 
quantum circuits. 

On a larger scale, variational quantum algorithms or other forms of quantum machine learning have been 
identified as a promising route to discover new algorithms in order to supplement the so far rather small 
number of algorithms with potential quantum advantage. 

This illustrates that the machine learning toolbox provides manifold ingredients that can boost the hybrid 
quantum-classical operation for these purposes. In addition, ML is one of the most prominent tools for an 
efficient interface between classical and quantum systems both for experiment discovery and control as 
well as for the translation of classical data into a quantum state and the transpilation of classical into 
quantum algorithms. ML algorithms operating in hybrid classical-quantum hardware will also allow us to 
harness properties of quantum systems to devise energy-efficient control tasks. 

Concrete examples of ML applications: 

- Cross-architecture optimization of quantum devices and quantum experiments. 
- Hybrid quantum-classical devices and control protocols. 

Short-term goals 

• Development of generative and reinforcement learning methods able to compile sequences of 
quantum operations, e.g. quantum circuits, given some input tasks, optimize the number of gates, and 
more generally, improve them based on hardware constraints. 

• Creation of new experimental setups able to create target quantum states, an, in particular, interesting 
ones like GHZ and other entangled states, with fewer physical components or new platforms. 

Mid-term goals 

• Discovery of more efficient implementations of known quantum algorithms as well as better ansatz for 
e.g. quantum chemisty and quantum simulation problems. 
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Long-term goals 

• End-to-end generation of quantum routines for input tasks, from the devising new quantum algorithms 
/ variational approaches to its efficient implementation in the native gates of the given hardware. 

4.2 - Simulation of quantum systems 
The simulation of quantum many-particle systems on classical computers is one of the greatest challenges 
in physics, but extremely important for advances in developing functional materials and chemical 
processes. It has been demonstrated for a wide range of traditional ab initio methods how machine learning 
components can be incorporated for their advancement. One example is the encoding of the quantum 
wave function in the form of artificial neural networks (neural quantum states), which was found to 
efficiently capture complex quantum states. 

These methods are currently pushing the state of the art and may be applied to outstanding problems such 
as high-temperature superconductivity and chemical reaction dynamics. By combining domain-specific 
knowledge of quantum mechanics with ML techniques, physics-aware ML can improve the accuracy and 
interpretability of predictions and models for quantum systems. One example of this is the learning of the 
hidden disorder landscape of a quantum device. Developing explainable AI for quantum physics could 
foster the adoption of quantum machine learning techniques as the paradigm for digital twinning of 
quantum systems, as well as identify new instances of quantum systems, which are out of reach to 
simulate with classical ML resources. 

Concrete examples of ML applications 

- Neural quantum states. 
- Automated tailoring of properties of quantum materials. 
- Digital twins for quantum systems. 
- Classical shadows. 
- Classical control of Quantum circuits. 

4.3 - Analysis of quantum data 
Data from quantum systems is particularly complex and hard to analyze. For instance, in quantum many-
body systems, such as correlated electrons in solid-state systems, the relevant order at the basis of their 
functionality is often hard to extract. Recently it was found that machine learning tools can guide and 
extend such analysis by an unbiased exploration of all information. For example, artificial neural networks 
can be used to identify the relevant correlations from snapshots of quantum many-body systems on a 
lattice. This can result in the unbiased identification of the essential observables, which is particularly 
important in noisy settings or for exotic order, where traditional methods fail. In turn, generative modelling 
can provide crucial support in enriching data from quantum systems where extracting measurements is 
hardly accessible experimentally or is particularly time consuming. For that purpose, interpretable and 
explainable machine learning models will be of particular use to facilitate the discovery and understanding 
of such new observables. 

Concrete examples of ML applications 

- Discovering correlations and symmetries in quantum experiments. 
- Physics insights through explainable AI and AI-assisted discovery. 

Short-term goals 

• Develop supervised and unsupervised learning methods able to characterize data arising from various 
types of quantum hardware. 

• Introduce interpretable and explainable models and architectures able to re-discover known quantum 
theories and phenomena directly from data. 
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Mid-term goals 

• Build autonomous pipelines able to create, directly from data, new theories and efficient descriptions 
of the data arising from quantum experiments. 

Long-term goals 

• Combine these methods with those proposing and controlling quantum systems to create better 
experiments from which to acquire high-quality from which to acquire new theoretical insights. 

4.4 - Automated control and calibration of quantum 
technologies 

Both quantum technologies and fundamental experiments rely on the precise manipulation and fabrication 
of a large number of quantum degrees of freedom. Common challenges are the efficient characterization, 
avoidance of inevitable hardware imperfections, and optimization of control strategies. As the qubit 
numbers grow and the applications become manifold, automation becomes essential and machine 
learning tools have been shown to be powerful for this purpose. 

Examples include the fully automated tuning of quantum-dot devices, the automated optimization of 
entangling operations on a superconducting quantum processor could substantially improve their quality, 
which is crucial for near-term applications. ML will accelerate the process of quantum state preparation, 
gate operations, and measurement, leading to faster and more efficient quantum computation or quantum 
communication protocols on given hardware. Thus, the ML toolbox can be employed to extend the 
applicability of quantum devices to problems with many noisy parameters such as imaging, radar, or 
gravitational wave detection. ML methods can readily be utilised to characterize noise sources.  

By facilitating the exploration of large parameter spaces, ML can also be used to design optimized 
experimental setups for specific quantum tasks, such as quantum communication or quantum computing. 

Concrete examples of ML applications 

- Efficient characterization, tuning, design, and control of quantum experiments. 
- Mitigation and harnessing noise in quantum systems. 
- Cross-architecture optimization of quantum devices; cross-platform certification. 

Short-term goals 

• Online control of quantum experiments via reinforcement learning and other methods, improving the 
stability and coherence of quantum systems. 

• Development of better state preparations, operations and measurement patterns, enhancing the 
quality of current experiments. 

Mid-term goals 

• Development of fully-automated quantum laboratories, easing the preparation of multi-component 
experiments (e.g. calibration of optical tables and similar), for a wide variety of given tasks (i.e. multi-
task ML agents). This would be combined with large language models (LLM) for easy user interaction. 

Long-term goals 

• It would relate to the previous but adding an extra step of physics discovery with ML models to know 
which experiment we really want to do. 
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4.5 - Trustful, robust, interpretable, and explainable AI for 
quantum technologies 

Key considerations in applying machine learning to quantum science and technology are trust, robustness, 
interpretability, and explainability. While neural networks (NNs) have shown their power in various 
applications, their lack of transparency hinders the safe and reliable application of these algorithms to 
valuable quantum systems. Striking a delicate balance between leveraging advanced algorithms and 
mitigating risks is crucial for instilling confidence in automated control systems.   

Additionally, interpretability and explainability of ML in quantum science are critical for uncovering decision 
mechanisms used by NNs when addressing complex quantum problems. To drive scientific discovery, it is 
vital to not only comprehend the outputs generated by ML algorithms, but to also understand the underlying 
principles and concepts that guide their reasoning. Understanding the factors contributing to a model's 
predictions allows scientists to assess reliability, validate solutions, and identify biases and errors in 
training data. Ultimately, this improves the robustness of quantum simulations and predictions. Further, 
extracting human-understandable knowledge from ML models is pivotal for driving breakthroughs in 
quantum science and technology. Efficient implementation of approaches that effectively contribute to 
validating findings, uncovering novel insights, and advancing quantum science through new discoveries is 
a significant challenge.  

Application of AI onto quantum technologies is an excellent test scenario for these techniques, as AI 
discoveries can be retroactively explained, interpreted, and tested. In fact, first steps have been taken 
towards introducing genuinely quantum methods for providing tools for explainable quantum machine 
learning, based on Taylor-∞ that is a black-box explanation that exploits the Fourier picture of parametrized 
quantum circuits and quantum layerwise relevance propagation. Such tools can provide guidance on what 
it is that the quantum machine learns and provide valuable diagnostics for interpreting and explaining 
quantum models in the machine learning context. 

Short-term goals 

• Development of trustful AI models for the control of critical quantum systems. 

• In line to unsupervised learning for the analysis of quantum data is the development of scalable 
explainable and interpretable models with specific inductive biases towards quantum data.  

4.6 - Quantum error mitigation via post-processing by AI 
Quantum algorithms are known to typically output probability distributions over possible measurement 
outcomes. These distributions encode the solutions to computational problems, such as optimization, 
simulation, or factorization. However, due to inherent hardware limitations, noise, and decoherence, the 
observed probability distributions often deviate significantly from their ideal counterparts. This 
discrepancy poses a major challenge for practical quantum computation, particularly in the current era of 
NISQ devices. 

From a computational perspective, errors in quantum probability distributions emerge due to several 
factors. These include gate imperfections, state preparation and measurement errors, and decoherence 
caused by the environment. These errors distort the statistical properties of quantum algorithms, resulting 
in unreliable outputs. Unlike classical errors, which can often be corrected deterministically through 
redundancy, quantum errors require sophisticated mitigation techniques due to the no-cloning theorem 
and the fragility of quantum states. There are also worst case bounds known that limit the applicability of 
quantum error mitigation methods to basically log-log-depth quantum circuits in worst case complexity. 

Recent advancements in artificial AI techniques, particularly machine learning, reasoning, and 
optimization, have emerged as powerful tools to correct and refine quantum probability distributions post-
processing. Machine learning models, such as neural networks and Gaussian processes, have the capacity 
to learn error patterns from experimental quantum data and apply corrections to infer the ideal distribution. 
Furthermore, reinforcement learning and Bayesian reasoning can enhance error mitigation by dynamically 
adapting correction strategies based on observed system behavior.  
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Approximate reasoning, as exemplified by fuzzy logic, plays a pivotal role in the mitigation of quantum 
errors by addressing the inherent uncertainty and imprecision in the identification of quantum error 
patterns. By representing quantum errors in terms of multi-value logic, it becomes possible to identify, 
model, and correct errors in a more flexible and robust manner. To illustrate this point, fuzzy inference 
systems or algorithms for approximate clustering can be utilized to dynamically adjust post-processing 
parameters based on the degree of noise present in quantum outputs. This, in turn, improves the reliability 
of error mitigation techniques. 

Furthermore, optimization methods enable the precise adjustment of post-processing parameters to 
restore fidelity to the quantum outputs. For instance, evolutionary optimization, incorporating genetic 
algorithms, differential evolution and memetic algorithms, offers a robust approach to refining quantum 
error mitigation strategies. These techniques can optimize the parameters of mitigation operators, 
machine learning models, fine-tune fuzzy logic-based correction mechanisms, and identify novel error 
mitigation strategies by simulating evolutionary processes. By repeatedly selecting the most effective 
mitigation techniques based on their performance, evolutionary optimization ensures that the correction 
methods continuously improve over time. 

The utilization of artificial intelligence (AI)-driven techniques has emerged as a promising approach to 
enhance the reliability of near-term quantum computations. This enhancement is achieved without 
necessitating additional quantum resources, thus demonstrating the efficacy of AI-driven techniques in 
quantum error mitigation. 

Short-term goals 

• Develop machine learning models to learn and correct quantum error patterns from experimental data. 

• Implement fuzzy logic-based approaches for identifying and mitigating quantum errors. 

• Apply evolutionary optimization techniques to refine error mitigation strategies. 

• Benchmark AI-driven post-processing methods against traditional quantum error mitigation 
techniques. 

• Develop hybrid AI-quantum frameworks for improving the fidelity of quantum probability distributions. 

Mid-term goals 

• Develop AI-assisted dynamic parameter tuning for post-processing quantum outputs. 

• Investigate scalable AI techniques to handle increasing quantum system sizes. 

• Integrate AI-driven quantum error mitigation into practical NISQ applications, such as optimization and 
simulation. 

Long-term goals 

• Achieve AI-enhanced quantum error mitigation techniques that enable practical quantum advantage. 

• Establish AI-quantum co-optimization strategies for next-generation quantum processors. 

4.7 - Quantum error correction syndrome detection 
A prominent task in large scale fault-tolerant quantum computing is the decoding of error syndromes into 
the most likely error pattern. This is a natural field of application of classical AI, which needs to be carefully 
benchmarked against more traditional algorithms such as minimum-weight matching. Moving the needle 
in error correction can have a dramatic impact in the reduction of error correction overhead. But we must 
ensure that machine learning based error syndrome detection scales well with large distance error 
correction codes. 

Short-term goals 

• AI-based quantum error decoders validated on digitally simulated experiments. 
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Mid-term goals 

• AI-based quantum error decoders validated on experiments. 

Long-term goals 

• Practical fault tolerant quantum computing controlled by AI-based classical infrastructure. 

4.8 - Quantum architecture search with machine learning for 
near-term algorithms 

Variational quantum algorithms are widely used in the NISQ era to solve machine learning problems such 
as classification, prediction and generative tasks. Parameterized quantum circuits are crucial component 
of variational quantum algorithms (VQAs) and deep parameterized circuits encounter trainability issues, 
such as barren plateaus, quantum hardware constraints and noise further worsen the performance of 
variational quantum algorithms. To address these issues, there is need to design efficient circuits with 
optimal set of parameters tailored to underlying problems and quantum hardware, such a task of 
generating circuits for a specific problem also referred as quantum architecture search or automatic design 
of circuits. 

In early 2000s, researchers used evolutionary algorithms to find efficient quantum circuits. Since then, 
various ML and optimization techniques such as deep reinforcement learning, Bayesian optimization, 
adaptive methods such as quantum autoencoders for data compression, ADAPT_VQE and other attention-
based models are used to generate optimal circuits. Many quantum architecture search techniques are 
inspired by neural architecture search and can be used to generate an efficient ansatz which can help in 
tacking issues associated with VQAs, co-designing algorithms for specific quantum hardware or finding 
new efficient and better algorithms. 

Short-term goals 

• Use reinforcement learning and generative models for efficient circuit sampling. 

Mid-term goals 

• Generate optimal circuits and new quantum algorithms for industrial use-cases or applications. 

Long-term goals 

• Use AI techniques to discover new strategies and better quantum algorithms. 
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5 - Foundational questions 
While much of the current interest in machine learning and AI stems from applied and practical 
considerations, fundamental questions about learning systems have in fact been a driving force of much 
of the progress. The importance of fundamental physics perspectives on traditional ML, which have been 
critical in achieving the current unprecedented points of accuracy, has been acknowledged even by 2024 
Nobel Prize in physics. Statistical mechanics has led to the development of energy-based techniques and, 
then, diffusion models have achieved game-changing results in terms of data generation. Insights from 
studies on the renormalization group and mean field theory have been used in modeling ML/AI behavior.  

Given the fundamental role that classical physics had in the development of classical AI and machine 
learning, it is tempting to ask whether novel quantum machine learning paradigms can be developed from 
foundational studies in quantum physics and related disciplines. For instance, quantum statistical 
mechanics and quantum thermodynamics may have a role as crucial as that of classical statistical 
mechanics for classical AI. The understanding of correlations in dynamical quantum many-body systems 
may inspire novel quantum algorithms and approximation methods. Progresses on foundational questions 
can also help defining novel approaches to deal and interact with “data” in the quantum world and to better 
understand learning in a fully quantum setting. Example questions include the different interpretations of 
quantum physics, the interplay between the quantum and the classical world, the role of the measurement 
postulate and all the limitations that come from that, such as the no-cloning theorem, but also the 
emergence of the wave-function collapse from other, more fundamental theories.  

In this section we speculate on not fully understood, and yet-to-be discovered connections between 
physics, (quantum) machine learning and AI. 

General goals 

• Explore novel quantum machine learning paradigms inspired by foundational studies. 

• Develop a fully quantum AI model, leveraging principles like superposition, entanglement, and non-
locality to redefine learning in a quantum world. 

• Better understand learning in the quantum realm, addressing fundamental questions such as the role 
of no-cloning theorem, quantum measurements and the wave-function collapse. 

• Investigate quantum learning as a physical process, e.g. whether interacting quantum many-particle 
systems can naturally perform learning tasks through their natural dynamics. 

• Apply physics principles to address safety, robustness, explainability, and interpretability in quantum 
AI systems, ensuring they are reliable and aligned with desired outcomes. 

•  Investigate quantum analogs of classical statistical-mechanical models (e.g., Hopfield networks) and 
their potential for storing and retrieving quantum information. 

• Address challenges in the quantum agent-environment paradigm, such as entanglement between 
agents and environments, and develop frameworks for quantum generalizations of Markov decision 
processes. 

5.1 - Physics and (quantum) machine learning 
In this line of investigation, we reflect on the possible new connections between physics and learning 
systems. The question of new connections can be raised by considering the cutting edge and future 
challenges of even classical machine learning. 

5.1.1 -  Toward understanding complex and heterogeneous systems and 
toward general AI 

Most progress in ML has been achieved by giving up on the dream of general AI, and by focusing on specific 
sub-tasks. 
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Recent developments in e.g. large language models foreshadow the return to the original challenges, where 
complicated learning systems (which are not just a large neural network, but a complex transformer 
architecture) fulfill ever more complicated roles. It is a question whether new ideas in physics modeling of 
complex systems can lead to new insights. 

5.1.2 -  Safe AI: robustness, explainability, interpretability, alignment and 
other 

While the previous decades were hyper focused on performance in terms of accuracy, it is abundantly clear 
the next phases will require a more complicated metric. Arguably the most important features of AI we are 
interested in pertaining to safety of AI systems, in various contexts. The simplest cases include verification 
tasks (ensuring an AI system will never fail in some catastrophic way), robustness (stability to small random 
or adversarial perturbations of inputs), explainability (the capacity to reason about why certain decisions 
were made) and so on. It is a question whether physics principles and logic can be used to shed light on the 
limitations and perspectives of achieving AI systems which are safe. 

5.1.3 -  Quantum AI 
Quantum machine learning and AI methods, being developed in the context of quantum information, are 
already naturally connected to aspects of quantum physics. However, it is unclear whether other parts of 
quantum theory, such as quantum thermodynamics, quantum statistical mechanics, condensed matter, 
ideas can be used to elucidate the learning processes of quantum mechanical systems. This remains 
another challenge. 

5.2 - Machine learning and AI in a quantum world 
Another fundamental question stems from the very definition of quantum machine learning. This field does 
not merely lie at the intersection of quantum information, quantum physics, machine learning, and artificial 
intelligence but rather somewhere in their union. This subsection attempts to address a speculative use 
case where everything can be quantum: the model, the training and inference algorithms, the data and 
possibly even the labels. Everything can be quantum in nature and all the data, after appropriate pre-
processing, can be transformed to a non-trivial quantum state (e.g., by identifying high correlations through 
the incorporation of entanglement techniques). Therefore, it is crucial to foster the creation of 
methodologies and techniques that address quantum artificial intelligence at a level that is fully 
encompassed within quantum physics. Ultimately, machine learning can be understood as information 
processing. Quantum information can be very different from classical information. Genuine quantum 
principles and phenomena such as superposition, entanglement, non-locality, contextuality, and other 
quintessential facets of quantum information may alter both the definition and the meaning of learning in  
a fully quantum world. 

The first class of foundational issues in QML arises when we consider various machine learning modalities 
(supervised, unsupervised, reinforcement), and allow data (inputs) and or labels (outputs) to be promoted 
to genuinely quantum states. The long-term objective here is to build a fully quantum AI model where all 
data, training algorithm and inference system are fully quantum. 

We identify a number of classes of questions: 

5.2.1 -  How to define learning 
For simplicity we will illustrate the questions on the cases of supervised learning and reinforcement 
learning. Early investigations into supervised quantum learning date back to the 2000s, where multiple 
copies of quantum states were considered as inputs. This setting has been explored extensively, yielding 
many interesting results. However, the exact similarities and differences between classical and quantum 
supervised learning remain unclear. For instance, it is still unknown what theoretical or practical limitations 
might exist when working with quantum data sets or when mapping classical supervised learning problems 
onto quantum analogs.  If the learner uses up all the quantum data during the training phase, then the 
learning process is essentially classical, as the training set becomes a classical map. 
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Hybrid strategies where classical ML methods are paired with quantum measurements to extract 
information from quantum data may be problematic, at least in the worst case, due to exponential 
complexity of full tomographic methods. Recent advances in less general, but more efficient methods 
based on, e.g., classical shadows, quantum kernel methods, quantum Boltzmann machines or tensor 
networks, may be efficient for specific tasks, but the general principle is still missing.  Learning strategies 
based on quantum memories are more likely to achieve probable speedups. Extra care must be taken if the 
final learned model is stored in a quantum memory, as the latter can neither be copied nor broadcasted. 
However, there are intriguing cases—such as gentle measurement techniques in shadow tomography—
that suggest quantum states can retain usefulness even after partial measurement. Determining scenarios 
where supervised quantum learning algorithms must retain quantum training data for future tasks remains 
an open foundational problem. More fundamental problems emerge when we consider genuinely quantum 
label sets. This scenario introduces significant conceptual challenges. 

5.2.2 -  Learning as a physical process 
Every quantum algorithm can be expressed as a suitably discretized evolution of a physical process, e.g. 
with time-dependent Hamiltonians or maps. A natural question is then whether we can define an 
interacting quantum many-particle system, e.g. with many qubits or other physical particles, whose natural 
evolution performs the learning task in a fully quantum world. Different “natural” evolutions are possible, 
e.g. via unitary dynamics or via an adiabatic evolution where the system approximately remains in the 
ground state of some evolving Hamiltonian. A possible example of this research line is about finding 
quantum analogies to the relationship between classical statistical-mechanical models and associative 
memories (Hopfield networks). Specifically, it is not clear if quantum channels (Hamiltonians, or open 
systems) can be similarly used to store and retrieve quantum information. Speculative examples may 
include storing/retrieving information in ground states of some complex quantum Hamiltonian (e.g. 
transfer Ising, where non-commutative terms enable a rich phase diagram), or in non-local correlations 
that are created in the scrambling dynamics of chaotic quantum systems.  

5.2.3 -  Learning agent-environment paradigm challenges 
Reinforcement learning, and more generally the learning agent-environment paradigm also encounters 
numerous challenges when "quantized". In a fully quantum RL setting, both the environment and the agent 
may become entangled over the course of their interactions. This entanglement complicates the very 
notion of a “history” of interactions because measurements of this history collapse superpositions and 
potentially interfere destructively with the learning process. One partial solution is to redefine learning in 
these contexts using quantum generalizations of Markov decision processes (MDPs), as seen in works on 
quantum observable MDPs. 

However, these frameworks typically assume quantum actions are represented as classical descriptions 
of quantum operations, rather than as quantum states themselves. A more general formalism—allowing 
agents to generate and act with quantum states—remains underexplored. Quantum processors, e.g. 
based on port-based teleportation, can be used to write the program in a quantum state, but no efficient 
training method is known to date. The question of information extracted during learning is also crucial. If an 
agent gathers information from a quantum environment, it must operate within the constraints of quantum 
mechanics—e.g., the no-cloning theorem. This raises fascinating foundational questions: can knowledge 
itself be defined in terms of quantum states that cannot be shared or copied? While this notion aligns with 
quantum mechanics, it challenges classical intuitions about knowledge transfer and collaboration in 
machine learning. 

Ultimate questions here go in far, from the limits of quantum autonomous agents to learn new quantum 
physics, to in principle the influence learning may have on foundations of quantum mechanics, e.g. in the 
definition of an observer which performs a measurement. 
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6 - Building bridges between quantum and AI  
We believe it is now the right time to invest in research at this emerging interface of quantum science and 
machine learning so that the EU can remain competitive with the US, Canada, and China in developing 
next-generation quantum technology. Patents for machine learning applications in quantum computing 
are already picking up speed, but mostly in the US. The quantum flagship has put Europe in a strong position 
and a broad funding initiative for machine learning in quantum science will enable Europe to take on the 
lead in these new developing technologies. 
Funding needs to be both for fundamental and applied research projects in order to cover the full spectrum 
of developments. While the applications for optimal control are already being prepared for commercial 
exploitation by the first start-ups, ab initio computational methods are in a more exploratory phase, which 
requires funding of purely fundamental research for unleashing the full potential. The same holds for other 
applications such as the analysis of quantum data arising from experiments that might turn out seminal for 
the understanding of physics or for future technologies. 

Facilitating the exchange between the ML and the quantum physics communities has the potential to 
transform both fields and interdisciplinary teams are needed to push beyond current boundaries. At the 
core of this proposed initiative is the merging of diverse communities, to bring together a heterogeneous 
range of views and ensure openness and diversity. For quantum science and technology to synergize with 
the field of ML and artificial intelligence, we shall need to bring together quantum experimentalists, 
quantum theorists, ML engineers, computer scientists, but also entrepreneurs and investors. 

Open-source software, freely available and standardized benchmark data sets, model databases, and 
community challenges were central for the rapid advancement of machine learning techniques. Building 
on this experience, we believe that creating a similar ecosystem for machine learning in quantum science 
will likewise boost progress by removing barriers for interdisciplinary collaboration and optimally tapping 
the available potential. To this end, it is necessary to standardize quantum physics problems through 
interoperable and structured interfaces. Their role will be to enable sharing of experimental data and 
translating quantum physics problems into a common ML language. On the one hand, standardization will 
enhance the applicability of ML methods in both theoretical and experimental quantum physics, thus 
improving reusability, reproducibility, and comparability. On the other hand, the development of 
community-driven projects will create shared spaces, which provide interfaces as tutorials or 
documentations that help students and researchers to familiarize and strengthen cohesion between fields, 
and encourage interdisciplinary collaboration and cross fertilization. 

Progress in this rapidly developing field requires the training of a next generation of researchers with 
expertise in quantum science and machine learning, e.g., via suitable doctoral networks. Additional 
training and educational resources, such as dedicated online platforms and training resources, and 
encouraging cross-field conferences and symposia, will simplify the access to state-of-the-art ML and 
further encourage its widespread adoption by quantum scientists. This can bridge the gap between theory 
and experiment, by facilitating a more seamless integration of theoretical modeling and experimental data 
analysis. Such educational programs at the interface of quantum science and machine learning will 
produce a workforce that is highly skilled in both forward-looking fields. This is not only fruitful for 
fundamental research, but also essential to keep replenishing industry with open-minded experts who 
transfer knowledge into competitive products and services. 

Social media and science-communication strategies, as well as collaborations with creators, developers, 
and industry partners, will play a key role in making machine learning techniques in quantum physics 
beneficial to all of society. By placing engagement at the center of the research process we shall bridge 
boundaries between disciplines, facilitate the exchange of valuable knowledge with industry partners and 
policy makers, and improve the public perception of quantum science. 
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7 - Recommendations and challenges 
Here are some of the key transversal operational scientific and technology challenges to address to 
advance the fields covered in this white paper. 

7.1 - Theoretical work 
Quantum artificial intelligence is still a relatively nascent domain. More theoretical insights are needed to 
better understand how to best employ quantum phenomenon to accelerate computing. It deals with 
determining theoretical and practical computing speedups, reduced requirement for training data and to 
obtain better results. Also, more theoretical work is needed to create efficient bridges between quantum 
and classical AI, like when a quantum computer is used to train a machine or deep learning  model that is 
then run classically, like in embedded systems (car visions, etc). This work should also cover both 
fundamental and applied research and practical use cases, like in healthcare. 

7.2 - Aligning with quantum hardware roadmaps 
Implementing quantum-assisted artificial intelligence algorithms is highly dependent on the progress of 
quantum computing hardware. Particularly, it is related to the quality and quantity of available qubits. 
Quantum artificial intelligence capabilities will progress synchronously with hardware evolutions, such as 
advanced NISQ with better qubit fidelities, early fault-tolerant quantum computers (eFTQC) with about a 
hundred logical qubits, and beyond, with utility-scale FTQC quantum computers support thousand logical 
qubits. Algorithmic advances in quantum artificial intelligence will guide quantum hardware academics 
and industry vendors in adjusting their roadmaps. Likewise, quantum machine learning developers will 
synchronize their work with hardware vendors. 

A second aspect deals with qRAM (quantum random access memory) research. qRAM will be an important 
enabling technology for quantum machine learning, particularly to address the pressing challenges with 
data preparation and loading. 

7.3 - Estimating resources 
In relation to the previous point, research work on quantum artificial intelligence as well as on the usage of 
classical machine learning for the development of quantum computing hardware and software must rely 
on careful resource analysis. It will help identify scaling issues and avoid massive energetic needs that 
society will struggle to provide. This transversal research will benefit from the involvement of the EuroHPC 
participating organizations. 

As concern with the energy consumption of current AI and LLM solutions is growing, some academic and 
industry work should estimate, benchmark and optimize the energy consumption of both quantum artificial 
intelligence solutions and classical artificial intelligence tools used in quantum technologies. 

When AI is used as a tool for calibration, error analysis for mitigation or correction, or other enabling tasks 
in quantum computing, it is crucial that its energy consumption does not negate the energy savings 
expected in quantum computing relative to classical HPC.  

7.4 - Engaging classical AI specialists 
Advancing the field of quantum machine learning as well as the use of machine learning in the context of 
quantum computing requires more engagement of the classical AI scientific community. Cross-discipline 
initiatives may be launched in education and community buildouts to encourage it. 

This will also enable the quantum community to better qualify the challenges ahead with classical AI. 
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7.5 - Software engineering  
The development of an EU-based known-how and competitive advantage on classical and quantum 
artificial intelligence should lead to the development of new software engineering tools. It deals with 
quantum code compilers and optimizers leveraging machine learning, tools enabling quantum code 
debugging and the likes. Proper usage of LLM-based software engineering will also be crucial for increasing 
the productivity of quantum software developers. 

7.6 - Open science and industry competitiveness 
The EU is highly challenged by US dominance in the AI field, at the hardware level (Nvidia) as well as with 
software and cloud infrastructures (OpenAI, Google, Meta, AWS). Meanwhile, a vibrant innovation 
ecosystem works well with open science and research processes. We have in mind that open science is 
needed to advance the field while developing the quantum industry ecosystem. 

Managing this delicate equilibrium requires robust EU and member states fundamental research funding, 
requiring that resulting publications and datasets be openly accessible. This ensures a steady flow of new 
discoveries leveraged for the development of commercial ventures. It goes with an effective intellectual 
property (IP) framework that allows researchers to publish freely while securing intellectual property and 
the launch of spin-offs startups. Moreover, adopting an open innovation mindset, in which pre-competitive 
platforms and standards are developed collaboratively, enables companies to compete on final products, 
services and business models, while benefiting from shared R&D. Academic–industry partnerships, joint 
research centers, and private-sector sponsored fellowships can contribute to enriching the talent pool and 
nurture knowledge transfer without locking valuable insights behind corporate walls. Working on 
standardization and benchmarking tools can also contribute to shape the competitive landscape. 

EU funding instruments can contribute to this synergy with individual (ERC) and collaborative research 
grants (EU Quantum Flagship), proof-of-concept grants (EIC), dedicated incubators and large-cap funding 
(EIB). 

7.7 - Education 
The computer science education landscape is currently dominated by artificial intelligence. In order to 
enable the future programs related to this white paper, EU member states will need to train more scientists 
at the crossroads of AI and quantum computing. New curriculum should be proposed to develop the skills 
of quantum-AI scientists and engineers. 

7.8 - Societal challenges 
Quantum technologies and artificial intelligence are strategic technology fields for the EU. They are now 
widely addressed at dedicated industry fairs and investor meetings. While quantum technologies 
themselves can be considered as neutral tools, the societal challenges largely arise from how these 
technologies are applied. The EU is already tackling the societal impact of these emerging technologies. 
Indeed, the General Data Protection Regulation (GDPR) and the AI Act regulate many aspects related to 
data protection, transparency, and accountability in high-tech fields, including QT applications.   

Furthermore, existing initiatives in Europe are addressing the societal challenges of QT such as the 
Quantum Delta Centre for quantum and society in the Netherlands, the QuantWorld project in Germany, 
the Innsbruck Quantum Ethics Lab in Austria or the Humanities for quantum sciences lab in France. 

As joint efforts work best when parties coming from different disciplines can develop a common language, 
the expertise of societal sciences and humanities (SSH) may play a significant role in the joint development 
of artificial intelligence and quantum technologies. It will ensure that societal and ethical considerations 
are embedded within the broader strategic development of quantum technologies in Europe. 
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9 - List of acronyms 
AI: Artificial intelligence 

CFN: Collision-free navigation 

EIB: European Innovation Bank 

EIC: European Innovation Council 

ERC: European Research Council 

FTQC: Fault-tolerant quantum computer 

HHL: Harrow-Hassidim-Llloyd, a quantum algorithm solving linear problems 

HEP: High-energy physics 

HPC: High performance computing 

LLM: Large language model 

MAS: Multi-agent system 

MDP: Markov decision process 

ML: Machine learning 

NISQ: Noisy intermediate-scale quantum 

NN: Neural network 

PCA: Principal Component Analysis 

POMDP: Partially observable Markov decision process 

PQC: Parametrized quantum circuit, also “post-quantum cryptography” but not in the context of this 
white paper. 

QAOA: Quantum approximate optimization algorithm 

QCNN: Quantum convolutional neural network 

QEC: Quantum Error Correction 

QEM: Quantum Error Mitigation 

QFT: Quantum Fourier transform 

QHD: Quantum Hamiltonian descent 

QMAS: Quantum multi-agent system 

QMDP: Quantum Markov decision process 

QML: Quantum machine learning 

QNN: Quantum neural network 

QP: Quantum-supported planning 

QPS: Quantum planning and scheduling 

qRAM: quantum random access memory  

QRL: Quantum reinforcement learning 

QSL: Quantum supervised learning 

QS: Quantum-supported scheduling 

QT: Quantum technology 

QUBO: Quadratic unconstrained binary optimization 
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RL: Reinforcement learning 

SRIA: Strategic Research and Industry Agenda 

VQA: Variational quantum algorithm 
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