

Infrastructure for Quantum computing

- HPC capacity
- HPC-QC facilities
- Materials
- Nanofabrication facilities
 Experimental, pilots, (pre)-commercial what material platforms
- Control electronics
- Compilers?

Infrastructure for Quantum Communication

- Materials
- Nanofabrication
 Experimental, pilots, (pre)-commercial
- Networks
 metropolitan and back-bone networks,
 Fieldlabs / industrial environments
 QKD or entanglement-based?
- Satellites & HUP's
- standards

Infrastructure for Quantum simulations

- HPC access
- Q.C. access
- Compilers, software languages

Infrastructure for Metrology & other

- Quantum innovation centers facilities & knowhow-support for SME & start-ups bringing together value chains (also for training industrial residents) for spin-out to other markets
- Quantum in Space
 Atomic clocks at ISS
 GEO, LEO, cube-sats
 Space-grade support components
- Time & Frequency Transfer (TFT)

Infrastructure – notes from break-out session (1)

- Nanofabrication facilities:
 more than bare wafers; both academic & RTO level; role of foundries to be clarified; budget for people & maintenance beyond few years.
- Standardization: metrology institutes / European effort / Euramet / EU-wide acceptance
- Innovations centers: great for start-ups, education,...
- Communication networks: opportunities unequal across EU; network between all capitals; national-versus-EU responsibilities

Infrastructure – notes from break-out session (2)

- Photonics platforms good example; low loss waveguides; III-V materials; communication platform on available services
- Communication & Time-Frequency-Transfer communities need similar infrastructures (more general remark)
- Dedicated workshops on topic roadmaps
- Great overview of needs; we need a process to come to timing/priorities

Outcome from innovation break-out session

- How to exploit and preserve ideas of the proposals non selected in the ramp-up phase (make them available on the QSA website?)
- Define semantics (research, innovation, dissemination)
- Give access to clean-room for external users
- Focus on a few promising applications leading to products
- Help spin-offs from academia to develop low hanging fruits
- Involve customers in the definition of industrial needs
- Can we define the selection process (avoid a EC only decision).
 To which extent can we inluence on the EC decision.
- Identify incubators, venture capital (e.g. pharmaceutical industry)
- Academic people should develop their ideas themselves (start-up), make it more attractive

Training & Outreach: QSA work statement

WHAT WE HAVE PROMISED TO THE COMMISSION

- 1. Outreach material, speaker and events
 - 1. Expert and speaker database
 - 2. Industry outreach exploration
- 2. Web portal set up (Ulm)
- Press outreach including electronic media
 (VDI)
- 4. Reaching out to the workforce of tomorrow (aka Education)
 - 1. Collection of curriculae, materials, and best practices

This will happen over the next months

Please participate for a good start

Big event: Vienna kickoff

STARTING THE FLAGHSHIP PROPER

- Announcement of the first round of research projects
- Official start of the flagship
- Opportunities to network and coordinate
- Mark your calendars: October 29/30 in Vienna
- Opportunity to reach out to industry

Starting together

Join us to celebreate quantum science and tell the world

QT Flagship Governance Structure

Decision making Intelligence gathering Implementation and networking and networking Advice Flagship BoF projects Board of Funders (EC + MS/AC) **SEB** QCN Quantum Science and Community Engineering Network Board EC European Commission QuantERA projects SAB national Strategic activities Advisory Board QT QT Community Community CSA QT Flagship coordination and support action and networking

Board of Funders (BoF)

Alignment of initiatives

European Commission (EC)

Programme sponsor; project selection, funding decision

Strategic Advisory Board (SAB)

- Monitor progress of FS
- Propose Strategic Research Agenda (SRA)

Science and Engineering Board (SEB)

- Coordinate FS R&I activities
- Identify collaboration opportunities, joint developments, sharing of infrastructures among projects

Coordination and Support Actions (CSA)

- Enable networking of stakeholders
- Liaise with QT initiatives at national/regional level
- Manage communication platform and information repositories
- Organize workshops, conferences
- Organize benchmarking of QT projects
- Promote, disseminate, maximize outreach
- Identify education and training offers/needs

Quantum Community Network (QCN)

- Identify, engage, involve relevant national stakeholders
- Help coordinate the interaction and program
 harmonization between the FS and national initiatives

QT Flagship Governance Structure

Decision making Intelligence gathering Implementation and networking and networking Advice Flagship BoF projects Board of Funders (EC + MS/AC) **SEB** QCN Science and Quantum Engineering Community Network Board EC European Commission QuantERA projects SAB national Strategic activities Advisory Board QT QT Community Community CSA QT Flagship coordination and support action and networking

Major results from break-out session

QT Flagship deviates considerably from former flagships

- no core project but open competition via calls
- community-backed SRA as input for FS calls
- EC QT unit launches calls based on QT FS SRA
- EC QT unit organizes evaluations

QT FS Governance Structure proposal

- is intended for ramp-up phase (in H2020)
- will be further developed for FP9

QT Flagship is open to whole QT Community

- Everybody is invited to community meetings
- Industry and other diciplines are involved

CSA provides services to all boards and actors of the FS

SAB members must not be project investigators (conflict of interest) but must be senior experts in QT

Quantum Science in Space

	Photons
Scientific goal	Long distance entanglement. Tests of
	spacetime models
Why in Space	Large gravitational differences, velocities
What is	 Develop/launch quantum hardware
needed	2. Three small satellites in LEO Q-system
	Spacecraft for space Q-correlation
3-year	1. Model optical communication payload
Horizon	2. Build and fly the small-satellite system
	3. Conceive the measurement protocols
10-year	1. Implementing a satellite mission
Horizon	Implementing a satellite mission
	Develop and test the mission
How much	1. 15M€ (3yr) and 20M€ (10yr)
	2. 20M€ (3yr) and 80M€ (10yr)
	5M€ (3yr) and 100M€ (10yr)

Atom Clocks			
Scientific goal	Tests of GR, Lorentz invariance, dark		
	matter		
Why in Space	Large gravitational differences, velocities		
What is	1. Optical clock on ISS		
needed	2. Network of minisats with frequency links		
3-year	1. Engineering model of space optical clock		
Horizon	2. Feasibility of frequency links on minisats		
10-year	1. Space mission		
Horizon	2. Working network of minisats		
How much	1.20M€ (3yr) and 100M€ (10yr)		
	2.6M€ (3yr) and 20M€ (10yr)		

Cold Atoms		
Scientific goal	Tests of GR and of the QM/GR interplay.	
	Dark matter. Gravitational waves.	
Why in Space	Long interrogation times	
What is	 Further technological demonstration 	
needed	Compact accelerometer for space	
3-year	 Breadboard of space atom-interferom 	
Horizon	2. Ultra-compact interferometer	
10-year	 "Technology demonstration" in space 	
Horizon	Breadboard of the compact sensor	
How much	1. 40M€ (3yr) and 90M€ (10yr)	
	2. 6M€ (3yr) and 20M€ (10yr)	

Optomechanics and Matter-wave interferometry		
Scientific goal	Tests of large mass quantum coherence.	
	Interplay QM/gravity	
Why in Space	Long free time evolution (+100s)	
What is	1. Targeted science case	
needed	2. Technology development	
3-year	1. Theoretical modeling	
Horizon	2. Feasibility studies	
10-year	1. Refined models	
Horizon	Drop tower-like experiments	
How much	1. 2M€ (3yr) and 10M€ (10yr)	
	2. 10M€ (3yr) and 100M€ (10yr)	

Total: 124M€ (3yr) and 526M€ (10yr)

Quantum Technology for Space

0	ptical Qua	antum Commu	nication	1
Which tech	Photon	- '	for	quantum
	communi			
Societal	Secure o	communication	(SC)	
benefits				
What is	1. Payloa	ds to test LEO S	C at hig	h rate
needed	2. Creation	on of secure net	work on	ground
	3. Impler	mentation of GE	O platfor	ms
	4. Impler	mentation of GN	SS platfo	orms
3-year	1. Engine	ering & flight m	odels	
Horizon	2. Telesc	ope network on	ground	
	3. Model	of a payload for	GEO SC	i I
	4. Model	of a payload for	GNSS S	C
10-year	1. Operat	tion in Space of	the SC p	ayloads
Horizon	2. Operat	tion using Space	-ground	network
	3. Flight	model of a paylo	ad for G	EO SC
	4. Flight	model of a paylo	ad for G	INSS SC
How much	1.50+40	M€ (3yr) and 26	50+ <i>370</i> N	1€ (10yr)
	2. 10+20	M€ (3yr) and 40)+100M€	C (10yr)
	3.5+10N	1€ (3yr) and 50-	+60M€ (10yr)
		3yr) and 80M€ (-	

Atom Clo	cks for frequency measurements
Which tech,	High-precision clocks for clock-based
which app	gravimetry and time/frequency distribution
Societal	Understanding climate
benefits	Precise navigation
What is	1. Network of minisats with frequency links
needed	2. Atomic clock on IIS
3-year	1. Demonstr. frequency links on minisats
Horizon	2. Engineering model of space atom clock
10-year	1. Working network of minisats
Horizon	2. High performance atomic clock in space
How much	1. 6M€ (3yr) and 20M€ (10yr)
	2. 20M€ (3yr) and 100M€ (10yr)

	Cold Atoms as sensors
Which tech	High-precision sensors
Societal	Earth & Planetary Observation
benefits	Geodesy measurements
	Ocean circulation modeling
	Navigation
What is	1. Further technological demonstration
needed	2. Compact accelerometer for space
3-year	1. Breadboard of space atom-interferom
Horizon	2. Ultra-compact interferometer
10-year	1. "Technology demonstration" in space
Horizon	2. Breadboard of the compact sensor
How much	1. 20M€ (3yr) and 75M€ (10yr)
	2. 3M€ (3yr) and 10M€ (10yr)

Total: 119+80M€ (3yr) and 635+530M€ (10yr)

Italics = national and private investment

www.qtspace.eu

International Cooperation

- Discussion Panel with EU Japan USA representatives
- "Do we share similar vision?"

USA- QT at preliminary state/pre-competitive fundamental science

Japan – mixture of both

EU – narrow to technology

- Strategic programmes, large investments at the national level (Q-LEAP Japan, Flagship in Europe, national programmes in the US)
- Benefits:

Scientific cooperation itself
Complementarity (avoid unnecessary duplication)

• Findings:

International cooperation is well established at the academic level and could be enhanced

Challenges:

EC – the gap between fundamental research and technology is narrow, strategy on IP needed USA – we see the gap quite large EC - Excellent expertise in Europe - more funding required to create a "critical mass"/concentrate on large infrastructure USA – bottom-up approach, areas of cooperation should come from the research groups, whereas EU is more policy driven.

• **Next steps:** Effective communication (clear expectations discussed during joint workshops) and looking for a winwin scenario, if possible?