EU-Canada Workshop on Quantum Research

3 May 2021

Dr Gustav Kalbe

Head of Unit “High Performance Computing & Quantum Technologies

DG CONNECT, European Commission
Overview

1. QT IN THE EUROPEAN UNION
2. EU – CANADA
3. HORIZON EUROPE EVALUATION
Europe’s Digital Decade: Digital Compass

On 9 March 2021, the Commission presented a vision and avenues for Europe’s digital transformation by 2030. This vision for the EU’s digital decade evolves around four cardinal points:

Skills
- ICT Specialists: 20 millions + Gender convergence
- Basic Digital Skills: min 80% of population

Secure and sustainable digital infrastructures
- Connectivity: Gigabit for everyone, 5G everywhere
- Cutting edge Semiconductors: double EU share in global production
- Data - Edge & Cloud: 10,000 climate neutral highly secure edge nodes

Quantum
- Computing: first computer with quantum acceleration

Digital transformation of businesses
- Tech up-take: 75% of EU companies using Cloud/Al/Big Data
- Innovators: grow scale ups & finance to double EU Unicorns
- Late adopters: more than 90% of SMEs reach at least a basic level of digital intensity

Digitalisation of public services
- Key Public Services: 100% online
- e-Health: 100% availability medical records
- Digital Identity: 80% citizens using digital ID
Quantum in the EU in the period 2021-2027

R&D (low TRL)

Deployment (high TRL)
The Quantum Flagship 2018-2021

EU Research Framework Programme 2014-2020 (Horizon 2020)

RAMP-UP PHASE 2018-2021

- €152 million
- 20 EU-funded projects

4 projects 2 projects 4 projects 2 projects 7 projects

Quantum Internet - secure communication and applications
By 2021 quantum simulators 20x more precise
By 2021, sensors with resolution 1000x better
By 2021, quantum computers of 50-100 qubits demonstrating first quantum applications
Discover & understand new fundamental quantum principles

www.qt.eu
EU – Canada Collaboration

• Long tradition of EU-Canada Collaboration
• Both are at the forefront of S&T developments
• Both have programmes focusing on long-term objectives
• Successful EU-Canada institutional & scientific dialog

Expected Outcomes
■ Make progress in the foundations of quantum S&T
■ Benefit from synergies and complementary competencies
■ Identify mutual benefits and achieve common targets to reach within the next decade

→ EU – Canada joint call
EU – Canada Research and Innovation Action joint call

CONDITION	**SPECIFIC CONDITION**
Indicative opening of the Call | May-June 2021
Indicative deadline of the Call | 8 September 2021
Expected (EU+Canada) contribution per project | EUR 2.5 million (this does not preclude submission and selection of a proposal requesting different amounts)
Expected duration of projects | 36 months (this does not preclude submission and selection of a proposal requesting different durations)
Indicative EU budget | Indicative EU budget EUR 4.00 million (CAD 6.00 million) – Support EU beneficiaries
Indicative Canada budget (NSERC) | Indicative Canada budget EUR 4.00 million (CAD 6.00 million) – Support Canada beneficiaries
Type of Action | Research and Innovation Actions, **single-stage submission and evaluation**
Technology Readiness Level | TRL 1-2 to TRL 2-3, basic science
Scope of Joint EU – Canada projects

✓ Address a mix of quantum technology challenges in the areas of EU – Canada interest

✓ Identify the *added value and/or mutual benefit* for both EU and Canadian beneficiaries (including the integration of different aspects like physics, engineering, computer science, theory, algorithms, software, manufacturing, control, infrastructures, etc.)
Technological and societal challenges to address (1 or more)

Quantum computing and simulation

- Co-design of hardware and software to accelerate applications
- Seamless interoperable software-to-hardware stack that can apply over multiple platforms
- Theoretical and computer science foundations of quantum algorithms and architectures

//\ Clearly define the benefit of EU-Canada collaboration //\
Technological and societal challenges to address (1 or more)

Quantum communication

- Privacy and security concepts, proofs and applications, including QKD (quantum key distribution) and beyond
- Device independent protocols, quantum network/repeater protocols, including architectures and network stack
- Development of satellite and space-based hardware, and certification/verification of states and correlations

\[\text{Clearly define the benefit of EU-Canada collaboration} \]
Technological and societal challenges to address (1 or more)

Quantum Sensing and Metrology

Application-specific quantum sensor development covering:

- Device fabrication, characterisation, e.g. for magnetometry, prospection, imaging, navigation, biomedical

- Theoretical research optimising simple sensors, control, as well as advanced approaches (use of entanglement and error correction).

//\ Clearly define the benefit of EU-Canada collaboration //\
Who is eligible for EU funding?

EU COUNTRIES
- Member States (MS) including their outermost regions.
- The Overseas Countries and Territories (OCTs) linked to the MS.

NON-EU COUNTRIES
- Countries associated to Horizon Europe (AC).
- Low and middle income countries: See [HE Programme Guide](#).

SPECIFIC CASES
- Affiliated entities established in countries eligible for funding.
- EU bodies
- International organisations (IO):
 - International European research organisations are eligible for funding.
 - Other IO are not eligible (only exceptionally if participation is essential)
 - IO in a MS or AC are eligible for funding for Training and mobility actions and when announced in the call conditions.

- Minimum number of partners as set out in the call conditions (at least one independent legal entity established in a MS, and, at least two other independent legal entities established either in a MS or AC).
- Legal entities: Universities, research centers, industry, SMEs …
Who is eligible for Canada funding?

See NSERC presentation (Canada researchers must meet NSERC’s eligibility criteria)
Experts assess proposals individually. Minimum of three experts per proposal (but often more than three).

All individual experts discuss together to agree on a common position, including comments and scores for each proposal.

The panel of experts reach an agreement on the scores and comments for all proposals within a call, checking consistency across the evaluations. If necessary, resolve cases where evaluators were unable to agree.

The Commission/Agency reviews the results of the experts’ evaluation and puts together the final ranking list.

EU Funding & Tenders Portal – single entry point

Admissibility/eligibility check

Allocation of proposals to evaluators

Receipt of proposals

Individual evaluation

Consensus group

Panel review

Finalisation

Standard EU evaluation process

Evaluation panel: EU and Canada experts
Activities to establish new knowledge or to explore the feasibility of a new or improved technology, product, process, service or solution.

This may include basic and applied research, technology development and integration, testing, demonstration and validation of a small-scale prototype in a laboratory or simulated environment.

EXCELLENCE

- Clarity and pertinence of the project’s objectives, and the extent to which the proposed work is ambitious, and goes beyond the state-of-the-art.

- Soundness of the proposed methodology, including the underlying concepts, models, assumptions, inter-disciplinary approaches, appropriate consideration of the gender dimension in research and innovation content, and the quality of open science practices including sharing and management of research outputs and engagement of citizens, civil society and end users where appropriate.

IMPACT

- Credibility of the pathways to achieve the expected outcomes and impacts specified in the work programme, and the likely scale and significance of the contributions due to the project.

- Suitability and quality of the measures to maximize expected outcomes and impacts, as set out in the dissemination and exploitation plan, including communication activities.

QUALITY AND EFFICIENCY OF THE IMPLEMENTATION

- Quality and effectiveness of the work plan, assessment of risks, and appropriateness of the effort assigned to work packages, and the resources overall.

- Capacity and role of each participant, and extent to which the consortium as a whole brings together the necessary expertise.

Proposals aspects are assessed to the extent that the proposed work is within the scope of the work programme topic
For more information

EU Topic Coordinator
Christian Trefzger, Policy Officer, DG CNECT
High Performance Computing & Quantum Technologies
cnect-c2-evaluations@ec.europa.eu

Canada, NSERC contact
Katie Wallace, NSERC
Director Strategic Partnerships
rp-quantum@nserc-crsng.gc.ca

https://qt.eu/